已知,證明:,并利用上述結(jié)論求的最小值(其中.
見解析;
解析試題分析:可用作差比較;作差比較大小的關(guān)鍵是恰當(dāng)變形,達(dá)到易于判斷符號(hào)的目的,而常用的變形方法有配方法、因式分解等如本題中將作差后關(guān)鍵就是變形確定符號(hào),將其展開 后合并同類項(xiàng)得,這個(gè)式子剛好就是一個(gè)完全平方,而,所以有。也可以用分析法等來(lái)證明。分析法是從求證的不等式出發(fā),分析使這個(gè)不等式成立的充分條件,把證明不等式轉(zhuǎn)化為判定這些充分條件是否具備的問題。如果能夠肯定這些充分條件都已具備,那么就可以斷定原不等式成立,這種證明方法叫做分析法。如本題中要證明,則找使得這個(gè)不等式成立的充分條件依次找下去,最后得到(顯然成立),所以不等式得證。
試題解析:
4分
7分
(法二)要證明
只要證 2分
即證 4分
即證(顯然成立)
故原不等式得證 7分
由不等式成立
知, 10分
即最小值為25,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。 13分
考點(diǎn):不等式的證明及基本不等式的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,點(diǎn)是橢圓的一個(gè)頂點(diǎn),的長(zhǎng)軸是圓的直徑,、是過點(diǎn)且互相垂直的兩條直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將總和為200的10個(gè)數(shù)放置在給定的一個(gè)圓周上,且任意三個(gè)相鄰的數(shù)之和不小于58.所有滿足上述要求的10個(gè)數(shù)中最大數(shù)的最大值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com