【題目】如圖,直三棱柱中,且,,分別為,的中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角的大小為,求銳二面角的正切值.
【答案】(1)詳見(jiàn)解析(2)
【解析】
(1)由已知條件可得是平行四邊形,從而,由已知條件能證明平面,由此能證明平面;(2)以為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,不妨設(shè),,求出面的一個(gè)法向量為,根據(jù)線面角可求出,在中求出,在即可求出結(jié)果.
(1)取中點(diǎn),連接,則,從而,
連接,則為平行四邊形,從而.
∵直三棱柱中,平面,面,∴,
∵,是的中點(diǎn),∴,
∵,∴面
故平面
(2)以為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,
由條件:不妨設(shè),,
,,,,,
,,
設(shè)平面的一個(gè)法向量為,
,可取為一個(gè)法向量
,
過(guò)作,連,則為二面角的平面角,
在中,,
在中,,,則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O為坐標(biāo)原點(diǎn),a≠0,設(shè)f(x)=+b,b>a. (1)若a>0,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)的定義域?yàn)閇 ,π],值域?yàn)閇2,5],求實(shí)數(shù)a與b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱里放有2個(gè)紅球,1個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動(dòng)另附說(shuō)明如下:
①凡購(gòu)物滿100(含100)元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
②凡購(gòu)物滿188(含188)元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
③若取得的2個(gè)小球都是紅球,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
④若取得的2個(gè)小球都不是紅球,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
⑤若取得的2個(gè)小球只有1個(gè)紅球,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的人數(shù)與抽獎(jiǎng)總次數(shù)(假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng));
(2)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎(jiǎng)中獲得紅包獎(jiǎng)金10元,5元,2元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|0},B={x|x2﹣3x+2<0},U=R,求
(1)A∩B;
(2)A∪B;
(3)(UA)∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直.
(1)試比較與的大小,并說(shuō)明理由;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某河流上的一座水力發(fā)電站,每年六月份的發(fā)電量(單位:萬(wàn)千瓦時(shí))與該河上游在六月份的降雨量(單位:毫米)有關(guān)據(jù)統(tǒng)計(jì),當(dāng)時(shí), ; 每增加10, 增加5.已知近20年的值為:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(1)完成如下的頻率分布表:近20年六月份降雨量頻率分布表
(2)假定今年六月份的降雨量與近20年六月份降雨量的分布規(guī)律相同,并將頻率視為概率,求今年六月份該水力發(fā)電站的發(fā)電量低于490(萬(wàn)千瓦時(shí))或超過(guò)530(萬(wàn)千瓦時(shí))的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中a為實(shí)數(shù).
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的零點(diǎn);
(2)若f(x)在(-2,2)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于給定的實(shí)數(shù)a,若存在兩個(gè)不相等的實(shí)數(shù)根,,(<且≠0)使得f()=f(),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com