【題目】已知函數(shù),曲線在點處切線與直線垂直.
(1)試比較與的大小,并說明理由;
(2)若函數(shù)有兩個不同的零點,,證明:.
【答案】(1),理由見解析(2)詳見解析
【解析】
(1)求出的導數(shù),由兩直線垂直的條件,即可得切線的斜率和切點坐標,進而可知的解析式和導數(shù),求解單調(diào)區(qū)間,可得,即可得到與的大小;(2)運用分析法證明,不妨設(shè),由根的定義化簡可得,,要證:只需要證: ,求出,即證,令,即證,令,求出導數(shù),判斷單調(diào)性,即可得證.
(1)函數(shù),,
所以,
又由切線與直線垂直,
可得,即,解得,
此時,
令,即,解得,
令,即,解得,
即有在上單調(diào)遞增,在單調(diào)遞減
所以
即
(2)不妨設(shè),
由條件:
,
要證:只需要證:,
也即為,由
只需要證:,
設(shè)即證:,
設(shè),則
在上是增函數(shù),故,
即得證,所以.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標系中,角的頂點是原點,始邊與軸正半軸重合.終邊交單位圓于點,且,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,記.
(1)若,求;
(2)分別過作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足①對于任意,都有;②;③的圖像與軸的兩個交點之間的距離為4.
(1)求的解析式;
(2)記
①若為單調(diào)函數(shù),求的取值范圍;
②記的最小值為,討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若存在距離為的兩條直線和,使得對任意都有恒成立,則稱函數(shù)有一個寬度為的通道.給出下列函數(shù):
①; ②; ③; ④.
其中在區(qū)間上有一個通道寬度為的函數(shù)是__________(寫出所有正確的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品,則損失100元.已知該車間制造電子元件的過程中,次品率與日產(chǎn)量的函數(shù)關(guān)系是:.
(1)寫出該車間的日盈利額(元)與日產(chǎn)量(件)之間的函數(shù)關(guān)系式;
(2)為使日盈利額最大,該車間的日產(chǎn)量應(yīng)定為多少件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,為自然對數(shù)的底數(shù)),若對于恒成立.
(1)求實數(shù)的值;
(2)證明:存在唯一極大值點,且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】華為手機作為華為公司三大核心業(yè)務(wù)之一,2018年的銷售量躍居全球第二名,某機構(gòu)隨機選取了100名華為手機的顧客進行調(diào)查,并將這人的手機價格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機價格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機價格在和的顧客中選取人,并從這人中隨機抽取人進行回訪,求抽取的人手機價格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形中,、分別是、上的點,,,,是的中點,現(xiàn)沿著翻折,使平面平面.
(1)為的中點,求證:平面.
(2)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com