【題目】點(diǎn)為平面上一點(diǎn),有如下三個(gè)結(jié)論:
①若,則點(diǎn)為的______;
②若,則點(diǎn)為的______;
③若,則點(diǎn)為的______.
回答以下兩個(gè)小問:
(1)請(qǐng)你從以下四個(gè)選項(xiàng)中分別選出一項(xiàng),填在相應(yīng)的橫線上.
A. 重心 B. 外心 C. 內(nèi)心 D. 垂心
(2)請(qǐng)你證明結(jié)論②.
【答案】(1)①重心;②內(nèi)心;③外心. (2)證明見解析.
【解析】
(1)對(duì)①,化為分析即可.
對(duì)②,通過運(yùn)算證明即可證明點(diǎn)在的角平分線上,同理可證點(diǎn)在的角平分線上即可.
對(duì)③,先證明點(diǎn)為平面上一點(diǎn),則滿足,不全為0的點(diǎn)是唯一的,再論證當(dāng)為外心時(shí)滿足即可.
(1)對(duì)①,因?yàn)?/span>,故,取中點(diǎn)為,
則,故在邊的中線上.同理在邊的中線上,故為的重心.
對(duì)②,同解析(2).
對(duì)③,先證明點(diǎn)為平面上一點(diǎn),則滿足,不全為0的點(diǎn)是唯一的.
證明:假設(shè)還有一點(diǎn)滿足,則有,即
,故,此時(shí)重合.
所以點(diǎn)是唯一的.
再證若為外心時(shí), .
證明:因?yàn)?/span>
所以設(shè)的外接圓半徑為則
即.
綜上所述, 為外心.
(2)對(duì),由正弦定理有.
故,故.
即
故,故在 的角平分線上,同理可證點(diǎn)在 的角平分線上.故為的內(nèi)心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)和,令,對(duì)以下三個(gè)論斷:
(1)若和都是奇函數(shù),則也是奇函數(shù);(2)若和都是非奇非偶函數(shù),則也是非奇非偶函數(shù):(3)和之一與有相同的奇偶性;其中正確論斷的個(gè)數(shù)為( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時(shí),討論在區(qū)間上零點(diǎn)個(gè)數(shù);
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間“英語(yǔ)考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就“是否取消英語(yǔ)聽力”問題進(jìn)行了問卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:
態(tài)度 調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 |
在校學(xué)生 | 2100人 | 120人 | 人 |
社會(huì)人士 | 600人 | 人 | 人 |
(1)已知在全體樣本中隨機(jī)抽取人,抽到持“應(yīng)該保留”態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代科學(xué)家祖沖之兒子祖暅在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”(“冪”是截面積,“勢(shì)”是幾何體的高),意思是兩個(gè)同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢(shì)既同”,則該不規(guī)則幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線為:到兩定點(diǎn)、距離乘積為常數(shù)的動(dòng)點(diǎn)的軌跡.以下結(jié)論正確的個(gè)數(shù)為( )
(1)曲線一定經(jīng)過原點(diǎn);
(2)曲線關(guān)于軸、軸對(duì)稱;
(3)的面積不大于;
(4)曲線在一個(gè)面積為的矩形范圍內(nèi).
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com