【題目】已知橢圓()的離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標(biāo);若不存在,說明理由.
【答案】(1) (2)見解析
【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.
(1)由題意可得,,又,
解得,.
所以,橢圓的方程為
(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.
設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.
設(shè),,定點.(依題意
則由韋達定理可得,,.
直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).
所以,,即得.
又,,
所以,,整理得,.
從而可得,,
即,
所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立. 特別地,當(dāng)直線為軸時,也符合題意. 綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產(chǎn)—運輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據(jù)統(tǒng)計某種有機蔬菜的產(chǎn)量與有機肥料的用量有關(guān)系,每個有機蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應(yīng)數(shù)據(jù)如下表
使用堆漚肥料(千克) | 2 | 4 | 5 | 6 | 8 |
產(chǎn)量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產(chǎn)量增加量是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當(dāng)天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經(jīng)驗,當(dāng)天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當(dāng)天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內(nèi)的銷售量(單位:份),制成如下表格(注:,且);
前8小時內(nèi)的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數(shù) | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機蔬菜利潤的期望值為決策依據(jù),當(dāng)購進17份比購進18份的利潤的期望值大時,求的取值范圍.
附:回歸直線方程為,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個同學(xué)的學(xué)號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左焦點為,點為橢圓上任意一點,且的最小值為,離心率為.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,若動直線與橢圓交于不同兩點、(、都在軸上方),且.
(i)當(dāng)為橢圓與軸正半軸的交點時,求直線的方程;
(ii)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:對;
(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】編號分別為的12名籃球運動員在某次籃球比賽中的得分記錄如下:
運動員編號 | ||||||||||||
得分 | 5 | 10 | 12 | 16 | 8 | 21 | 27 | 15 | 6 | 22 | 18 | 29 |
(1)完成如下的頻率分布表:
得分區(qū)間 | 頻數(shù) | 頻率 |
3 | ||
合計 |
(2)從得分在區(qū)間內(nèi)的運動員中隨機抽取2人,求這2人得分之和大于25的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點的直線交拋物線于、兩點,設(shè)為坐標(biāo)原點,點.
(1)求的值;
(2)若,,的面積成等比數(shù)列,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x與橢圓E:1(a>b>0)有一個公共焦點F.設(shè)拋物線C與橢圓E在第一象限的交點為M.滿足|MF|.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點P(1,)的直線交拋物線C于A、B兩點,直線PO交橢圓E于另一點Q.若P為AB的中點,求△QAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com