【題目】已知橢圓()的左焦點為,點為橢圓上任意一點,且的最小值為,離心率為.
(1)求橢圓的方程;
(2)設O為坐標原點,若動直線與橢圓交于不同兩點、(、都在軸上方),且.
(i)當為橢圓與軸正半軸的交點時,求直線的方程;
(ii)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)(i);(ii)存在定點.
【解析】
(I)結合橢圓的性質(zhì),計算a,b的值,即可。(II)(i)計算直線AF的斜率,得到BF的斜率,得到直線BF的方程,代入橢圓方程,得到B點坐標,計算AB直線的斜率,結合點斜式,計算方程,即可。(ii)設出直線AF的方程,代入橢圓方程,結合韋達定理,得到直線AB的斜率,設出直線AB的方程,令y=0,計算x的值,計算點坐標,即可。
解:(I)設橢圓的標準方程為:()
離心率為,,,
點為橢圓上任意一點,且的最小值為,
,,
解得,,
橢圓的方程為.
(II)
(i)由題意,,
,,
直線為:,
代入,得,解得或,
代入,得,舍,或,.
,直線的方程為:.
(ii)存在一個定點,無論如何變化,直線總經(jīng)過此定點.
證明:,在于軸的對稱點在直線上,
設直線的方程為:,
代入,得,
由韋達定理得,,
由直線的斜率,得的方程為:
令,得:
,
,,
,
對于動直線,存在一個定點,無論如何變化,直線總經(jīng)過此定點.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),下列對函數(shù)的性質(zhì)描述正確的是( )
A.函數(shù)的圖象關于點對稱
B.若,則函數(shù)f(x)有極值點
C.若,函數(shù)在區(qū)間單調(diào)遞減
D.若函數(shù)有且只有3個零點,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進養(yǎng)殖技術投入,該商家欲預測先進養(yǎng)殖技術投入為49千元時的年收益增量.現(xiàn)用以往的先進養(yǎng)殖技術投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關于x的回歸方程,并預測先進養(yǎng)殖技術投入為49千元時的年收益增量.
附:若隨機變量,則;
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次數(shù)學競賽中,某些選手是朋友關系.記所有選手的集合為X,對集合X的子集Y,若可以將這些人兩兩分組,且每組中兩名選手均是朋友關系,則稱子集Y“可兩兩分組”.已知集合X不可兩兩分組,且對于任意選手,若A、B不是朋友關系,則可兩兩分組,且X中沒有一個人與其他所有人均為朋友關系證明:對任意選手,若a、b為朋友關系,b、c為朋友關系,則a、c也為朋友關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.
(1)若n=6,則為甲圖著色時共有多少種不同的方法;
(2)若為乙圖著色時共有120種不同方法,求n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com