【題目】在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和Tn,并證明Tn<.
【答案】(1)(2)見解析
【解析】
(1)等差數(shù)列{an}的公差設(shè)為d,運(yùn)用等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公差,進(jìn)而得到所求通項(xiàng)公式;
(2)運(yùn)用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項(xiàng)相消求和可得Tn,再由不等式的性質(zhì)即可得證.
(1)等差數(shù)列{an}的公差設(shè)為d,2a9=a12+13,a3=7,
可得2(a1+8d)=a1+11d+13,a1+2d=7,
解得a1=3,d=2,
則an=3+2(n﹣1)=2n+1;
(2)Snn(3+2n+1)=n(n+2),
(),
前n項(xiàng)和Tn(1)
(1)().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線交曲線于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求曲線的方程;
(2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;
(3)若直線過點(diǎn),求面積的最大值,以及取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,部分對應(yīng)值如下表,又知的導(dǎo)函數(shù)的圖象如下圖所示:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
則下列關(guān)于的命題:
①為函數(shù)的一個(gè)極大值點(diǎn);
②函數(shù)的極小值點(diǎn)為2;
③函數(shù)在上是減函數(shù);
④如果當(dāng)時(shí),的最大值是2,那么的最大值為4;
⑤當(dāng)時(shí),函數(shù)有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過,,三點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)N 的直線被圓截得的弦AB的長為,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, ,…,即當(dāng) <n≤ (k∈N*)時(shí), .記Sn=a1+a2+…+an(n∈N).對于l∈N , 定義集合Pl=﹛n|Sn為an的整數(shù)倍,n∈N , 且1≤n≤l}
(1)求P11中元素個(gè)數(shù);
(2)求集合P2000中元素個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開帷幕.通過隨機(jī)調(diào)查某小區(qū)100名性別不同的居民是否觀看世界杯比賽,得到以下列聯(lián)表:
觀看世界杯 | 不觀看世界杯 | 總計(jì) | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
總計(jì) | 55 | 45 | 100 |
經(jīng)計(jì)算的觀測值.
附表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,所得結(jié)論正確的是( )
A. 有以上的把握認(rèn)為“該小區(qū)居民是否觀看世界杯與性別有關(guān)”
B. 有以上的把握認(rèn)為“該小區(qū)居民是否觀看世界杯與性別無關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為“該小區(qū)居民是否觀看世界杯與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“該小區(qū)居民是否觀看世界杯與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《厲害了,我的國》這部電影記錄:到2017年底,我國高鐵營運(yùn)里程達(dá)2.5萬公里,位居世界第一位,超過第二名至第十名的總和,約占世界高鐵總量的三分之二.如圖是我國2009年至2017年高鐵營運(yùn)里程(單位:萬公里)的折線圖.
根據(jù)這9年的高鐵營運(yùn)里程,甲、乙兩位同學(xué)分別選擇了與時(shí)間變量的兩個(gè)回歸模型①:;②.
(1)求,(精確到0.01);
(2)乙求得模型②的回歸方程為,你認(rèn)為哪個(gè)模型的擬合效果更好?并說明理由.
附:參考公式:,,.
參考數(shù)據(jù):
1.39 | 76.94 | 285 | 0.22 | 0.09 | 3.72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù) .
(1)記f(x)在區(qū)間[0,4]上的最大值為g(a),求g(a)的表達(dá)式;
(2)是否存在a使函數(shù)y=f(x)在區(qū)間(0,4)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線互相垂直?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
(Ⅰ)若,求的值;
(Ⅱ)求函數(shù)在區(qū)間上的最小值(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com