已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為.

(Ⅰ)求動(dòng)點(diǎn)軌跡的方程;

(Ⅱ)設(shè),過(guò)點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

 

【答案】

(Ⅰ);(Ⅱ)證明過(guò)程詳見解析.

【解析】

試題分析:本題考查橢圓的基本量間的關(guān)系及韋達(dá)定理的應(yīng)用.第一問(wèn)是考查橢圓的基本量間的關(guān)系,比較簡(jiǎn)單;第二問(wèn)是直線與橢圓相交于兩點(diǎn),先設(shè)出兩點(diǎn)坐標(biāo),本題的突破口是在消參后的方程中找出兩根之和、兩根之積,整理斜率的表達(dá)式,但是在本問(wèn)中需考慮直線的斜率是否存在,此題中蘊(yùn)含了分類討論的思想的應(yīng)用.

試題解析:(Ⅰ)由橢圓定義,可知點(diǎn)的軌跡是以為焦點(diǎn),以為長(zhǎng)軸長(zhǎng)的橢圓.

,得.故曲線的方程為.         5分

(Ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)其方程為

,得.         7分

設(shè),,

從而.                                                                                                                               11分

當(dāng)直線的斜率不存在時(shí),得,

綜上,恒有.                                                                                                         12分

考點(diǎn):1.三角形面積公式;2.余弦定理;3.韋達(dá)定理;4.橢圓的定義.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與點(diǎn)到定直線的距離之比為

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)、是直線上的兩個(gè)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與點(diǎn)到定直線的距離之比為.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)、是直線上的兩個(gè)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年黑龍江佳木斯市高三第三次調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)與到定點(diǎn)的距離之比為.

(1)求動(dòng)點(diǎn)的軌跡C的方程,并指明曲線C的軌跡;

(2)設(shè)直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,求實(shí)數(shù)的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)到定直線的距離比到定點(diǎn)的距離多1,

       (I)求動(dòng)點(diǎn)的軌跡的方程;

       (II)設(shè),求曲線上點(diǎn)到點(diǎn)距離的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案