【題目】某地計劃在水庫建一座至多安裝3臺發(fā)電機的水電站.過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.

1)求未來4年中,至多有1年的年入流量超過120的概率;

2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺發(fā)電機年凈利潤為5000萬元;若某臺發(fā)電機未運行,則該臺發(fā)電機年維護費與年入流量有如下關(guān)系:

年入流量

一臺未運行發(fā)電機年維護費

500

800

欲使水電站年凈利潤最大,應(yīng)安裝發(fā)電機多少臺?

【答案】1;(2)應(yīng)安裝發(fā)電機2.

【解析】

1)由題意求出年入流量3個范圍:,的概率.由二項分布可得在未來4年中至多有1年的年入流量超過120的概率;

2)記水電站年凈利潤為(單位:萬元).分別求安裝1臺發(fā)電機、安裝2臺發(fā)電機、安裝3臺發(fā)電機的數(shù)學(xué)期望,選擇最大的方案.

1)依題意,,

,

由二項分布,在未來4年中至多有1年的年入流量超過120的概率為:

.

2)記水電站年凈利潤為(單位:萬元)

①當(dāng)安裝1臺發(fā)電機時.

由于水庫年入流量總大于40,所以1臺發(fā)電機運行的概率為1.

此時的年凈利潤,;

②當(dāng)安裝2臺發(fā)電機時.此時,

,則只有1臺發(fā)電機運行,此時,因此

,則2臺發(fā)電機都能運行,此時,因此

由此得的概率分布列如下:

4500

10000

0.2

0.8

所以,.

③當(dāng)安裝3臺發(fā)電機時.此時,

,則只有1臺發(fā)電機運行,此時,因此

,則有2臺發(fā)電機運行,此時,因此

,則3臺發(fā)電機同時運行,此時,因此

由此得的概率分布列如下:

4000

9200

15000

0.2

0.7

0.1

所以,

綜上,欲使水電站年凈利潤最大,應(yīng)安裝發(fā)電機2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十五巧板,又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標號為的小板為等腰直角三角形,圖是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點,該點恰好取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,,.若點的中點,點靠近點的四等分點.

1)求證:平面;

2)若三棱臺的體積為,求三棱錐的體積.

注:臺體體積公式:,或在分別為臺體上下底面積,為臺體的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,的中點,平面平面上一點,平面.

1)求證:平面平面

2)若與底面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM25是衡量空氣質(zhì)量的重要指標,我國采用世衛(wèi)組織的最寬值限定值,即PM25日均值在以下空氣質(zhì)量為一級,在空氣質(zhì)量為二級,超過為超標,如圖是某地11日至10日的PM25(單位:)的日均值,則下列說法正確的是(

A.10天中PM25日均值最低的是13

B.1日到6PM25日均值逐漸升高

C.10天中恰有5天空氣質(zhì)量不超標

D.10天中PM25日均值的中位數(shù)是43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞減,f2)=0,則不等式flog2x)>0的解集為(

A.,4B.2,2C.,+∞)D.4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,平面PAC⊥平面ABCD,且有ABDC,ACCDDAAB.

1)證明:BCPA;

2)若PAPCAC,求平面PAD與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()(2017·開封二模)為備戰(zhàn)某次運動會,某市體育局組建了一個由4個男運動員和2個女運動員組成的6人代表隊并進行備戰(zhàn)訓(xùn)練.

(1)經(jīng)過備戰(zhàn)訓(xùn)練,從6人中隨機選出2人進行成果檢驗,求選出的2人中至少有1個女運動員的概率.

(2)檢驗結(jié)束后,甲、乙兩名運動員的成績用莖葉圖表示如圖:

計算說明哪位運動員的成績更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)若,求的極坐標方程;

2)若恰有4個公共點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案