【題目】四棱錐中,底面為直角梯形,,,,,,為的中點(diǎn),平面平面,為上一點(diǎn),平面.
(1)求證:平面平面;
(2)若與底面所成的角為,求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)通過(guò)線(xiàn)面平行,推證出點(diǎn)的位置,再結(jié)合面面垂直,推證出平面,即可由線(xiàn)面垂直推證面面垂直;
(2)以點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由線(xiàn)面角求得長(zhǎng)度,進(jìn)而再由向量法求得二面角的大小即可.
(1)連交于,連,如下圖所示:
因?yàn)?/span>平面,平面,平面平面,
所以,又為中點(diǎn),
所以為中點(diǎn),由≌,
∴
∴為中點(diǎn),
∵,且,則為平行四邊形,
∵
∴,又平面,
平面⊥平面,平面∩平面,
故⊥平面,又平面,
所以平面⊥平面.即證.
(2)連接,
∵,為AD的中點(diǎn),∴,
又平面,平面⊥平面,平面∩平面,
∴底面,又,
以分別為軸建立空間直角坐標(biāo)系.
設(shè),取平面的法向量,
又,
∴
∴,
設(shè)平面EBF的法向量所以
即可得
令
設(shè)二面角的平面角為
∴,又為鈍角
∴ ,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)的準(zhǔn)線(xiàn)方程為.
(1)求p的值;
(2)過(guò)拋物線(xiàn)C的焦點(diǎn)的直線(xiàn)l交拋物線(xiàn)C于點(diǎn)A,B,交拋物線(xiàn)C的準(zhǔn)線(xiàn)于點(diǎn)P,若A為線(xiàn)段PB的中點(diǎn),求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】抖音是一款音樂(lè)創(chuàng)意短視頻社交軟件,是一個(gè)專(zhuān)注年輕人的15秒音樂(lè)短視頻社區(qū),用戶(hù)可以通過(guò)這款軟件選擇歌曲,拍攝15秒的音樂(lè)短視頻,形成自己的作品.2018年6月首批25家央企集體入駐抖音,一調(diào)研員在某單位進(jìn)行刷抖音時(shí)間的調(diào)查,若該單位甲、乙、丙三個(gè)部門(mén)的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人.
(1)應(yīng)從甲、乙、丙三個(gè)部門(mén)的員工中分別抽取多少人?
(2)若抽出的7人中有3人是抖音迷,4人為非抖音迷,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的詳細(xì)登記.
①用表示抽取的3人中是抖音迷的員工人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望;
②設(shè)為事件“抽取的3人中,既有是抖音迷的員工,也有非抖音迷的員工’’,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若曲線(xiàn)與直線(xiàn)有且只有一個(gè)公共點(diǎn),求證:.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若的圖象上相鄰兩條對(duì)稱(chēng)軸的距離為,圖象過(guò)點(diǎn).
(1)求的表達(dá)式和的遞增區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三(3)班有學(xué)生50人,現(xiàn)調(diào)查該班學(xué)生每周平均體育鍛煉時(shí)間的情況,得到如下頻率分布直方圖,其中數(shù)據(jù)的分組區(qū)間為:,,,,,
(1)從每周平均體育鍛煉時(shí)間在的學(xué)生中,隨機(jī)抽取2人進(jìn)行調(diào)查,求這2人的每周平均體育鍛煉時(shí)間都超過(guò)2小時(shí)的概率;
(2)已知全班學(xué)生中有40%是女姓,其中恰有3個(gè)女生的每周平均體育鍛煉時(shí)間不超過(guò)4小時(shí),若每周平均體育鍛煉時(shí)間超過(guò)4小時(shí)稱(chēng)為經(jīng)常鍛煉,問(wèn):有沒(méi)有90%的把握說(shuō)明,經(jīng)常鍛煉與否與性別有關(guān)?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地計(jì)劃在水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站.過(guò)去50年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái)4年中,至多有1年的年入流量超過(guò)120的概率;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)發(fā)電機(jī)年凈利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)發(fā)電機(jī)年維護(hù)費(fèi)與年入流量有如下關(guān)系:
年入流量 | ||
一臺(tái)未運(yùn)行發(fā)電機(jī)年維護(hù)費(fèi) | 500 | 800 |
欲使水電站年凈利潤(rùn)最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若在上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.
求曲線(xiàn)C的直角坐標(biāo)方程與直線(xiàn)l的極坐標(biāo)方程;
Ⅱ若直線(xiàn)與曲線(xiàn)C交于點(diǎn)不同于原點(diǎn),與直線(xiàn)l交于點(diǎn)B,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com