變量X的分布列如表,且E(X)=6.3,則a=
.
考點(diǎn):離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:利用變量X的分布列和數(shù)學(xué)期望的性質(zhì)求解.
解答:
解:∵變量X的分布列如表,且E(X)=6.3,
∴b=1-0.5-0.1=0.4.
∴4×0.5+0.1a+9×0.4=6.3,
解得a=7.
故答案為:7.
點(diǎn)評(píng):本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的分布列的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
下列結(jié)論中:
①當(dāng)x>0且x≠1時(shí),lgx+
≥2;
②當(dāng)0<x≤2時(shí),x-
的最大值為
;
③a
2>b
2,ab>0⇒
<;
④不等式x+
>2的解集為(-1,0)∪(1,+∞)
正確的序號(hào)有
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
對(duì)任意x∈R,都有f(x+1)=f(x),g(x+1)=-g(x),且h(x)=f(x)g(x)在[0,1]上的值域[-1,2],則h(x)在[0,2]上的值域?yàn)?div id="7h5zxpt" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知復(fù)數(shù)z滿足|z+1|+|z-1|=2,則|z-2-2i|最大值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平行四邊形ABCD中,A(-1,3),B(3,-2),C(6,-1),則點(diǎn)D的坐標(biāo)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
復(fù)數(shù)z=
的共軛復(fù)數(shù)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
命題:
①實(shí)數(shù)都在實(shí)軸上;
②z∈C,則|z|=
;
③虛數(shù)都在虛軸上;
④z∈C,|z|=1,則z=±1;
⑤z∈C,則z為純虛數(shù)的充要條件是
=-z;
⑥z∈C,則|z|
2=z
2;
⑦z
1,z
2∈C,若z
12+z
22=0,則z
1=z
2=0
其中真命題的編號(hào)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如果函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出下列判斷:
(1)函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
(2)函數(shù)y=f(x)在區(qū)間(
-,2)內(nèi)單調(diào)遞增;
(3)當(dāng)x=
-時(shí),函數(shù)y=f′(x)有極大值;
(4)當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值.
則上述判斷中不正確的是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)a,b,c∈R,且a>b,則( )
A、a2>b2 |
B、< |
C、lga>lgb |
D、2-a<2-b |
查看答案和解析>>