9.已知一個(gè)幾何體是由上下兩部分組成的合體,其三視圖如圖,若圖中圓的半徑為1,等腰三角形的腰長(zhǎng)為$\sqrt{5}$,則該幾何體的體積是( 。
A.$\frac{4π}{3}$B.C.$\frac{8π}{3}$D.$\frac{10π}{3}$

分析 由三視圖知,此組合體上部是一個(gè)圓錐,下部是一個(gè)半球,半球體積易求,欲求圓錐體積需先求圓錐的高,再由公式求體積,最后再想加求出組合體的體積.

解答 解:這個(gè)幾何體上部為一圓錐,下部是一個(gè)半球,
由于半球的半徑為1,故其體積為$\frac{1}{2}×\frac{4}{3}$π×13=$\frac{2π}{3}$,
圓錐的高為$\sqrt{(\sqrt{5})^{2}-1}$=2,
故此圓錐的體積為$\frac{1}{3}$×2×π×12=$\frac{2π}{3}$.
∴此幾何體的體積是V=$\frac{2π}{3}+\frac{2π}{3}$=$\frac{4π}{3}$.
故選:A.

點(diǎn)評(píng) 本題考點(diǎn)是由三視圖求幾何體的面積、體積,考查對(duì)三視圖的理解與應(yīng)用,主要考查三視圖與實(shí)物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實(shí)物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)),已知該食品在0℃的保鮮時(shí)間是192小時(shí),在33℃的保鮮時(shí)間是24小時(shí)
(1)求k的值
(2)該食品在11℃和22℃的保鮮時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i是虛數(shù)單位,復(fù)數(shù)z=a+i(a∈R)滿足z2+z=1-3i,則a=(  )
A.-2B.-2或1C.2或-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=0,則|2$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B為鈍角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是側(cè)棱AA1上的動(dòng)點(diǎn).
(1)當(dāng)AA1=AB=AC時(shí),求證:A1C⊥BC1
(2)試求三棱錐P-BCC1的體積V取得最大值時(shí)的t值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)點(diǎn)P(1,2),并且在兩坐標(biāo)軸上的截距相等的直線方程是( 。
A.x+y-3=0或x-2y=0B.x+y-3=0或2x-y=0
C.x-y+1=0或x+y-3=0D.x-y+1=0或2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.拋物線x=2y2的焦點(diǎn)坐標(biāo)是( 。
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.直線y=2b與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左支、右支分別交于B,C兩點(diǎn),A為右頂點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOC=∠BOC,則該雙曲線的離心率為$\frac{\sqrt{19}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案