19.直線y=2b與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左支、右支分別交于B,C兩點(diǎn),A為右頂點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOC=∠BOC,則該雙曲線的離心率為$\frac{\sqrt{19}}{2}$.

分析 利用條件得出∠AOC=60°,C($\frac{2\sqrt{3}}{3}$b,2b),代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,可得$\frac{\frac{4}{3}^{2}}{{a}^{2}}$-4=1,b=$\frac{\sqrt{15}}{2}$a,即可得出結(jié)論.

解答 解:∵∠AOC=∠BOC,
∴∠AOC=60°,
∴C($\frac{2\sqrt{3}}{3}$b,2b),
代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,可得$\frac{\frac{4}{3}^{2}}{{a}^{2}}$-4=1,∴b=$\frac{\sqrt{15}}{2}$a,
∴c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{19}}{2}$a,
∴e=$\frac{c}{a}$=$\frac{\sqrt{19}}{2}$,
故答案為$\frac{\sqrt{19}}{2}$.

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知一個(gè)幾何體是由上下兩部分組成的合體,其三視圖如圖,若圖中圓的半徑為1,等腰三角形的腰長為$\sqrt{5}$,則該幾何體的體積是( 。
A.$\frac{4π}{3}$B.C.$\frac{8π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:?x∈[1,$\sqrt{2}$],x2-a≥0,命題q:?x0∈R,$\frac{1}{4}$x02-ax0+2-a=0,若命題“p∧q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖算法最后輸出的結(jié)果是67.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{11}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(±3$\sqrt{2}$,0)B.(±2,0)C.(0,±3$\sqrt{2}$)D.(0,±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{{x}^{2}}{{2}^{m}+1}$-$\frac{{y}^{2}}{{2}^{-m}+2}$=1的焦距的最小值為(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\frac{sinx}{x+1}$,則f′(0)等于(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓7x2+3y2=21上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用一個(gè)平面截正方體和正四面體,給出下列結(jié)論:
①正方體的截面不可能是直角三角形;
②正四面體的截面不可能是直角三角形;
③正方體的截面可能是直角梯形;
④若正四面體的截面是梯形,則一定是等腰梯形.
其中,所有正確結(jié)論的序號是( 。
A.②③B.①②④C.①③D.①④

查看答案和解析>>

同步練習(xí)冊答案