【題目】如圖,在直角△中,,△通過(guò)△以直線(xiàn)為軸順時(shí)針旋轉(zhuǎn)120°得到(),點(diǎn)為線(xiàn)段上一點(diǎn),且.
(1)求證:,并證明:平面;
(2)分別以、、為、、軸建立空間直角坐標(biāo)系,求異面直線(xiàn)與所成角的大小(用反余弦運(yùn)算表示);
(3)若,求銳二面角的大小.
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
(1)利用余弦定理求得,通過(guò)證明,證得平面.
(2)利用直線(xiàn)和直線(xiàn)的方向向量,計(jì)算出線(xiàn)線(xiàn)角的余弦值,進(jìn)而求得線(xiàn)線(xiàn)角的大小.
(3)判斷出銳二面角的平面角,進(jìn)而求得其大小.
(1)由于,所以,在三角形中,由余弦定
理得.
所以,所以.
依題意可知,所以平面,由于平面,所以.
因?yàn)?/span>,所以平面.
(2)在三角形中,由余弦定理得.所以.
依題意建立如圖所示空間直角坐標(biāo)系.則,設(shè),由得,
所以,解得,所以.
所以.設(shè)異面直線(xiàn)與所成角為,則,由于,所以.
(3)由于,所以是等腰直角三角形斜邊的中點(diǎn),所以,所以.
由(1)知平面,所以,所以銳二面角的平面角的平面角為,其大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)()關(guān)于直線(xiàn)對(duì)稱(chēng)的直線(xiàn)為,直線(xiàn),與橢圓分別交于點(diǎn)A,M和A,N,記直線(xiàn)的斜率為.
(1)求的值;
(2)當(dāng)變化時(shí),直線(xiàn)是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期為3π,則( 。
A. 函數(shù)f(x)的一個(gè)零點(diǎn)為
B. 函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=對(duì)稱(chēng)
C. 函數(shù)f(x)圖象上的所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后,所得的圖象關(guān)于y軸對(duì)稱(chēng)
D. 函數(shù)f(x)在(0,)上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),將曲線(xiàn)C1上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍,得到曲線(xiàn)C2.以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn)l:ρ(cosθ-2sinθ)=6.
(1)求曲線(xiàn)C2和直線(xiàn)l的普通方程.
(2)P為曲線(xiàn)C2上任意一點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn)A(﹣1,),B(),F為橢圓C的左焦點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)B為直線(xiàn)l1:x+y+2=0與直線(xiàn)l2:2x﹣y+4=0的交點(diǎn),過(guò)點(diǎn)B的直線(xiàn)1與橢圓C交于D,E兩點(diǎn),求△DEF面積的最大值,以及此時(shí)直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過(guò)點(diǎn),且在點(diǎn)處的切線(xiàn)方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①函數(shù)的值域是,則函數(shù)的值域?yàn)?/span>;
②把函數(shù)圖像上的每一個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,然后再向右平移個(gè)單位得到的函數(shù)解析式為;
③已知,則與共線(xiàn)的單位向量為;
④一條曲線(xiàn)和直線(xiàn)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中正確的有___________(寫(xiě)出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進(jìn)行野外生存訓(xùn)練.如圖所示,在相距的,兩個(gè)位置分別為300,100名學(xué)生,在道路上設(shè)置集合地點(diǎn),要求所有學(xué)生沿最短路徑到點(diǎn)集合,記所有學(xué)生進(jìn)行的總路程為.
(1)設(shè),寫(xiě)出關(guān)于的函數(shù)表達(dá)式;
(2)當(dāng)最小時(shí),集合地點(diǎn)離點(diǎn)多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題
①若三個(gè)平面兩兩相交,則它們的交線(xiàn)只能平行或重合;
②若a、b是異面直線(xiàn),則過(guò)不在a、b上的任一點(diǎn)一定可以作一條直線(xiàn)和a、b都相交;
③正三棱錐的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為b,若過(guò)SA、SB的中點(diǎn)作平行于側(cè)棱SC的截面,則截面面積為;
④過(guò)球面上任意給定兩點(diǎn)的平面與球面相截時(shí)其截面面積最大,則這樣的平面只有一個(gè).
其中( ).
A. 只有①,②成立.
B. 只有③成立.
C. 只有④ 成立.
D. ①、②、③、④都不成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com