【題目】如圖,直線()關于直線對稱的直線為,直線,與橢圓分別交于點AMA,N,記直線的斜率為

(1)求的值;

(2)當變化時,直線是否恒過定點?若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.

【答案】11;(2)當變化時,直線MN恒過定點

【解析】

1)設直線上任意一點關于直線對稱點為,利用關于直線對稱可得關系式,代入斜率乘積即可得到的值;

2)設出M,N的坐標,分別聯(lián)立兩直線方程與橢圓方程,求出MN的坐標,進一步求出MN所在直線的斜率,寫出直線方程的點斜式,整理后由直線系方程可得當k變化時,直線MN過定點

1)設直線上任意一點關于直線的對稱點為,

直線與直線的交點為,

,,∴,

據(jù)題意,得,∴①,

,得②,

由①②,得,

;

2)設點,,由

,∴.同理有,.又∵,

.∴

,即,

∴當變化時,直線MN恒過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩圓C1x2y22x6y10C2x2y210x12y450.

(1)求證:圓C1和圓C2相交;

(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分數(shù)在[120,130)內的頻率;

(2)估計本次考試的中位數(shù);

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖像上關于軸對稱的點至少有3對,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調區(qū)間及極值;

2)若函數(shù)上有唯一零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的最小值;

2)求函數(shù)上的最小值;

3)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述中正確的是(   )

A. ,則“”的充要條件是“

B. 函數(shù)的最大值是

C. 命題“”的否定是“

D. 是一條直線,是兩個不同的平面,若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查高一學生在分班選科時是否選擇物理科目與性別的關系,隨機調查100名高一學生,得到列聯(lián)表如下:由此得出的正確結論是( )

選擇物理

不選擇物理

總計

35

20

55

15

30

45

總計

50

50

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯誤的概率不超過0.01的前提下,認為“選擇物理與性別有關”

B.在犯錯誤的概率不超過0.01的前提下,認為“選擇物理與性別無關”

C.的把握認為“選擇物理與性別有關”

D.的把握認為“選擇物理與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角△中,,△通過△以直線為軸順時針旋轉120°得到(),點為線段上一點,且.

1)求證:,并證明:平面

2)分別以、、、、軸建立空間直角坐標系,求異面直線所成角的大。ㄓ梅从嘞疫\算表示);

3)若,求銳二面角的大小.

查看答案和解析>>

同步練習冊答案