【題目】已知向量 =( sin ,1), =(cos ,cos2 ).
(Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對(duì)邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,分別是角A,B,C的對(duì)邊,且.
(1)求角的值;
(2)已知函數(shù),將的圖像向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長(zhǎng)為.
(1)求的方程;
(2)過(guò)點(diǎn)的直線與相交于,兩點(diǎn),與相交于,兩點(diǎn),且與同向
(ⅰ)若,求直線的斜率
(ⅱ)設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點(diǎn),求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動(dòng)點(diǎn),求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a=2,A=45°,若此三角形有兩解,則b的取值范圍是( )
A.(2,2 )
B.(2,+∞)
C.(﹣∞,2)
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以?xún)蓚(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),過(guò)作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com