【題目】已知二次函數g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(1)求函數g(x)的解析式;
(2)設f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
【答案】
(1)解:∵g(x)=m(x﹣1)2﹣m+1+n
∴函數g(x)的圖象的對稱軸方程為x=1
∵m>0依題意得 ,
即 ,
解得
∴g(x)=x2﹣2x+1,
(2)解:∵
∴ ,
∵f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,
即 在x∈[﹣3,3]時恒成立
∴ 在x∈[﹣3,3]時恒成立
只需
令 ,
由x∈[﹣3,3]得
設h(t)=t2﹣4t+1
∵h(t)=t2﹣4t+1
=(t﹣2)2﹣3
∴函數h(x)的圖象的對稱軸方程為t=2
當t=8時,取得最大值33.
∴k≥h(t)max=h(8)=33
∴k的取值范圍為[33,+∞)
【解析】(1)由題意得方程組解出即可,(2)將f(x)進行變形,通過換元求出函數h(t)的最值,從而求出k的值.
科目:高中數學 來源: 題型:
【題目】如表提供了甲產品的產量x(噸)與利潤y(萬元)的幾組對照數據.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程 = x+ ;
(2)計算相關指數R2的值,并判斷線性模型擬合的效果.
參考公式: = = ,R2=1﹣ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|x﹣a|.
(1)當a=2時,求不等式f(x)≥4的解集;
(2)不等式f(x)<4的解集中的整數有且僅有1,2,3,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖的程序框圖表示求式子1×3×7×15×31×63的值,則判斷框內可以填的條件為( )
A.i≤31?
B.i≤63?
C.i≥63?
D.i≤127?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點,
且.
(1)求證: 平面;
(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過點作拋物線的兩條切線, 、分別為兩個切點,求面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com