【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點,
且.
(1)求證: 平面;
(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時,良馬走了二十一日.
則以上說法錯誤的個數(shù)是( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點.
(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點P為棱AD的三等分點(近A),平面PMC與平面ABC所成銳二面角的余弦值為 ,求棱AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(1)求函數(shù)g(x)的解析式;
(2)設(shè)f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的定義域是( )
A.[﹣ ,﹣1)∪(1, ]
B.(﹣ ,﹣1)∪(1, )??
C.[﹣2,﹣1)∪(1,2]
D.(﹣2,﹣1)∪(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記函數(shù) 的定義域為A,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定義域為B,求
(1)A,B;
(2)若BA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù)f(x)若同時滿足:①存在M>0,使得對任意的x1 , x2∈D,都有|f(x1)﹣f(x2)|<M;②f(x)的圖象存在對稱中心.則稱f(x)為“P﹣函數(shù)”.
已知函數(shù)f1(x)= 和f2(x)=lg( ﹣x),則以下結(jié)論一定正確的是( )
A.f1(x)和 f2(x)都是P﹣函數(shù)
B.f1(x)是P﹣函數(shù),f2(x)不是P﹣函數(shù)
C.f1(x)不是P﹣函數(shù),f2(x)是P﹣函數(shù)
D.f1(x)和 f2(x)都不是P﹣函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某藝校在一天的6節(jié)課中隨機安排語文、數(shù)學(xué)、外語三門文化課和其他三門藝術(shù)課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為(用數(shù)字作答).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com