精英家教網 > 高中數學 > 題目詳情

【題目】已知數列的各項均為正數,前項和滿足;數列是等比數列,前項和為.

1)求數列的通項公式;

2)已知等比數列滿足,,求數列項和為;

3)若,且等比數列的公比,若存在,使得,試求的值.

【答案】1,232

【解析】

1化為,由關系,即可求出通項;

2)由(1)得,將已知化為,即是關于函數,進而轉化為求的最值,求出,即可求解;

3)由(1)(2,即為,求解關于的不定方程,構造數列,判斷單調性,得出的可能值,驗證,即可求解.

1)數列項和滿足,

;

;

,∵數列的各項均為正數,

,又,∴,

2.∵等比數列滿足,

,令,

,當時,,

單調遞增;

時,單調遞減;

,即,而,∴,

且此時,設等比數列的公比為,

,,所以數列項和為

.

3)由,:,

正數數列公比的等比數列.,

:,即:,

,,∵,時,

上式分子,

數列單調遞增

.時,矛盾

.時,()

解得符合條件.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在五面體中,側面是正方形,是等腰直角三角形,點是正方形對角線的交點,.

(1)證明:平面;

(2)若側面與底面垂直,求五面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐EABCD的側棱DE與四棱錐FABCD的側棱BF都與底面ABCD垂直,//,.

1)證明://平面BCE.

2)設平面ABF與平面CDF所成的二面角為θ,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|2x1|a

1)當a1時,解不等式fx)>x+1;

2)若存在實數x,使得fxfx+1),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列滿足4Sn=an2+2an+1.

(1)求數列{an}的通項公式;

(2)設bn= ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是2019111日到1120日,某地區(qū)甲流疫情新增數據的走勢圖.

1)從這20天中任選1天,求新增確診和新增疑似的人數都超過100的概率;

2)從新增確診的人數超過100的日期中任選兩天,用X表示新增確診的人數超過140的天數,求X的分布列和數學期望;

3)根據這20天統(tǒng)計數據,預測今后該地區(qū)甲流疫情的發(fā)展趨勢.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐PABCD的三視圖如下圖所示,E是側棱PC上的動點.

1)求證:BD⊥AE

2)若點EPC的中點,求二面角DAEB的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產某產品的年固定成本為250萬元,每生產千件,需另投入成本(萬元),若年產量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產的商品能全部售完;

(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,,,

(1)求證:平面平面;

(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案