【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和滿(mǎn)足;數(shù)列是等比數(shù)列,前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知等比數(shù)列滿(mǎn)足,,,求數(shù)列前項(xiàng)和為;
(3)若,且等比數(shù)列的公比,若存在,使得,試求的值.
【答案】(1),(2)(3)2
【解析】
(1)化為,由與關(guān)系,即可求出通項(xiàng);
(2)由(1)得,將已知化為,即是關(guān)于函數(shù),進(jìn)而轉(zhuǎn)化為求的最值,求出,即可求解;
(3)由(1)(2),即為,求解關(guān)于的不定方程,構(gòu)造數(shù)列,判斷單調(diào)性,得出的可能值,驗(yàn)證,即可求解.
(1)數(shù)列前項(xiàng)和滿(mǎn)足,
即;,
;
,∵數(shù)列的各項(xiàng)均為正數(shù),
∴,又,∴,
(2).∵等比數(shù)列滿(mǎn)足,,
∴,令,
,當(dāng)時(shí),,
在單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減;
∴,即,而,∴,
∴且此時(shí),設(shè)等比數(shù)列的公比為,
,,所以數(shù)列前項(xiàng)和為
.
(3)由,得:,
正數(shù)數(shù)列公比的等比數(shù)列.∵,,
即:,即:,
設(shè),,∵,時(shí),
上式分子,
數(shù)列單調(diào)遞增
.∴時(shí),與矛盾
.∴若時(shí),(∵)
故,解得符合條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線(xiàn)的交點(diǎn),且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當(dāng)a=1時(shí),解不等式f(x)>x+1;
(2)若存在實(shí)數(shù)x,使得f(x)f(x+1),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列滿(mǎn)足4Sn=an2+2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2019年11月1日到11月20日,某地區(qū)甲流疫情新增數(shù)據(jù)的走勢(shì)圖.
(1)從這20天中任選1天,求新增確診和新增疑似的人數(shù)都超過(guò)100的概率;
(2)從新增確診的人數(shù)超過(guò)100的日期中任選兩天,用X表示新增確診的人數(shù)超過(guò)140的天數(shù),求X的分布列和數(shù)學(xué)期望;
(3)根據(jù)這20天統(tǒng)計(jì)數(shù)據(jù),預(yù)測(cè)今后該地區(qū)甲流疫情的發(fā)展趨勢(shì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求證:BD⊥AE
(2)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本(萬(wàn)元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線(xiàn),此時(shí)的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價(jià)為50萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完;
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線(xiàn)段上是否存在點(diǎn),使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com