【題目】平面直角坐標系過橢圓 )焦點的直線兩點, 的中點,的斜率為9.

(Ⅰ)求的方程

(Ⅱ)的左、右頂點, 上的兩點,若,求四邊形面積的最大值.

【答案】;(

【解析】試題分析:

(1)由題意求得, ,所以的方程為.

(2)聯(lián)立直線與橢圓的方程,整理可得四邊形面積 結(jié)合均值不等式的結(jié)論可得四邊形面積的最大值為

試題解析:

(Ⅰ)設(shè), ,, ,

由此可得,因為, , 所以,

又由題意知, 的一個焦點為,.因此 ,

所以的方程為.

)由題意可設(shè)直線的斜率為,所以直線的方程為,

聯(lián)立方程組可得, ,所以有進而可得所以,

同理可計算出,

所以四邊形面積

設(shè),令),所以,此時當且僅當時取得等號,

所以四邊形面積的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),且),,(其中的導(dǎo)函數(shù)).

(1)當時,求的極大值點;

(2)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小型風力發(fā)電項目投資較少,開發(fā)前景廣闊.受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,IEC(國際電工委員會)風能風區(qū)的分類標準如下:

風能分類

一類風區(qū)

二類風區(qū)

平均風速m/s

8.5---10

6.5---8.5

某公司計劃用不超過100萬元的資金投資于A、B兩個小型風能發(fā)電項目.調(diào)研結(jié)果是:未來一年內(nèi),位于一類風區(qū)的A項目獲利%的可能性為0.6,虧損%的可能性為0.4;

B項目位于二類風區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.

假設(shè)投資A項目的資金為)萬元,投資B項目資金為)萬元,且公司要求對A項目的投資不得低于B項目.

(Ⅰ)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望, ;

(Ⅱ)根據(jù)以上的條件和市場調(diào)研,試估計一年后兩個項目的平均利潤之和 的最大值,并據(jù)此給出公司分配投資金額建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,點M,N分別在線段AB1、BC1上,且AM=BN.以下結(jié)論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,⑤MN與 A1C1成30°.其中有可能成立的結(jié)論的個數(shù)為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x+y﹣4=0,定點P(2,0),E,F(xiàn)分別是直線l和y軸上的動點,則△PEF的周長的最小值為( 。
A.2
B.6
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為2,圓心在直線y=x+2上的圓C.
(1)當圓C經(jīng)過點A(2,2)且與y軸相切時,求圓C的方程;
(2)已知E(1,1),F(xiàn)(1,3),若圓C上存在點Q,使|QF|2﹣|QE|2=32,求圓心橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=a (0<a<1)的單調(diào)遞增區(qū)間是(
A.(﹣∞,
B.( ,+∞)
C.(﹣∞,﹣
D.(﹣ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

同步練習冊答案