【題目】已知半徑為2,圓心在直線y=x+2上的圓C.
(1)當(dāng)圓C經(jīng)過點A(2,2)且與y軸相切時,求圓C的方程;
(2)已知E(1,1),F(xiàn)(1,3),若圓C上存在點Q,使|QF|2﹣|QE|2=32,求圓心橫坐標(biāo)a的取值范圍.

【答案】
解:(1)∵圓心在直線y=﹣x+2上,
∴可設(shè)圓心坐標(biāo)為(a,﹣a+2),圓的方程為(x﹣a)2+[y﹣(﹣a+2)]2=4,
∵圓經(jīng)過點A(2,2)且與y軸相切,
∴有,解得a=2,
∴所求方程是:(x﹣2)2+y2=4;
(2)設(shè)Q(x,y),則由|QF|2﹣|QE|2=32得:(x﹣1)2+(y+3)2﹣[(x﹣1)2+(y﹣1)2]=32,即y=3,
∴Q在直線y=3上,
∵Q在(x﹣a)2+[y﹣(﹣a+2)]2=4上,
∴⊙C與直線y=3有交點,
∵⊙C的圓心縱坐標(biāo)為﹣a+2,半徑為2,
∴⊙C與直線y=3有交點的充要條件是1≤﹣a+2≤5,
∴﹣3≤a≤1,即圓心的橫坐標(biāo)a的取值范圍是﹣3≤a≤1.
【解析】(1)可設(shè)圓心坐標(biāo)為(a,﹣a+2),圓的方程為(x﹣a)2+[y﹣(﹣a+2)]2=4,利用圓經(jīng)過點A(2,2)且與y軸相切,建立方程,即可求圓C的方程;
(2)設(shè)Q(x,y),則由|QF|2﹣|QE|2=32得y=3,即Q在直線y=3上,根據(jù)Q在(x﹣a)2+[y﹣(﹣a+2)]2=4上,可得⊙C與直線y=3有交點,從而可求圓心的橫坐標(biāo)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中,( ),設(shè)

(1)若,求證: 是等比數(shù)列,并求出的通項公式;

(2)若,又?jǐn)?shù)列滿足:

①求數(shù)列的前;

②求證:數(shù)列中的任意一項總可以表示成該數(shù)列中其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某組合體的三視圖,則內(nèi)部幾何體的體積的最大值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系,過橢圓 )焦點的直線兩點, 的中點,的斜率為9.

(Ⅰ)求的方程

(Ⅱ)的左、右頂點, 上的兩點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , 則下列關(guān)于函數(shù)y=f[f(x)]+1的零點個數(shù)的判斷正確的是( 。
A.當(dāng)k>0時,有3個零點;當(dāng)k<0時,有2個零點
B.當(dāng)k>0時,有4個零點;當(dāng)k<0時,有1個零點
C.無論k為何值,均有2個零點
D.無論k為何值,均有4個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F(xiàn)分別是AB,CD上的點,EF∥BC,AE=x,G是BC的中點,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)當(dāng)x=2時,①求證:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱錐D﹣FBC的體積是否可能等于幾何體ABE﹣FDC體積的一半?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), , 記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關(guān)于x的方程F(x)﹣m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案