【題目】小型風力發(fā)電項目投資較少,開發(fā)前景廣闊.受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,IEC(國際電工委員會)風能風區(qū)的分類標準如下:

風能分類

一類風區(qū)

二類風區(qū)

平均風速m/s

8.5---10

6.5---8.5

某公司計劃用不超過100萬元的資金投資于A、B兩個小型風能發(fā)電項目.調(diào)研結(jié)果是:未來一年內(nèi),位于一類風區(qū)的A項目獲利%的可能性為0.6,虧損%的可能性為0.4;

B項目位于二類風區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.

假設投資A項目的資金為)萬元,投資B項目資金為)萬元,且公司要求對A項目的投資不得低于B項目.

(Ⅰ)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望 ;

(Ⅱ)根據(jù)以上的條件和市場調(diào)研,試估計一年后兩個項目的平均利潤之和 的最大值,并據(jù)此給出公司分配投資金額建議.

【答案】(1)見解析(2)最大為17.5萬元,建議給兩公司各投資50萬.

【解析】試題分析】(1)運用隨機變量的概率分布及數(shù)學期望計算公式進行分析求解;(2)依據(jù)題設條件運用線性規(guī)劃的知識分析求解:

解:(1)A項目投資利潤的分布列

P

0.6

0.4

B項目投資利潤的分布列

0

P

0.6

0.2

0.2

(2)

如圖所示

由圖可知,當 ,公司獲得獲利最大,最大為17.5萬元.

建議給兩公司各投資50萬.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1 , 若E是AD的中點,則異面直線A1B與C1E所成角等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列,定義為數(shù)列的一階差分數(shù)列,其中,( ),設

(1)若,求證: 是等比數(shù)列,并求出的通項公式;

(2)若,又數(shù)列滿足:

①求數(shù)列的前

②求證:數(shù)列中的任意一項總可以表示成該數(shù)列中其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 , AD=2,求四邊形繞AD旋轉(zhuǎn)一周所圍成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,點的中點,點為線段垂直平分線上的一點,且,四邊形為矩形,固定邊,在平面內(nèi)移動頂點,使得的內(nèi)切圓始終與切于線段的中點,且在直線的同側(cè),在移動過程中,當取得最小值時,點到直線的距離為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣x)的定義域為( 。
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某組合體的三視圖,則內(nèi)部幾何體的體積的最大值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系,過橢圓 )焦點的直線兩點, 的中點的斜率為9.

(Ⅰ)求的方程;

(Ⅱ)的左、右頂點, 上的兩點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.

查看答案和解析>>

同步練習冊答案