用logax、logay、logaa表示下列各式:
(1)loga
x2
yz3
;
(2)loga
x
y2z
;
(3)loga(x2yz3).
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專(zhuān)題:計(jì)算題
分析:根據(jù)對(duì)數(shù)的運(yùn)算法則即可得到結(jié)論.
解答: 解:(1)loga
x2
yz3
=logax2-(logayz3)=2logax-logay-3logaz.
(2)loga
x
y2z
=loga
x
-loga(y2z)=
1
2
logax-2logay-logaz
(3)loga(x2yz3)=2logax+logay+3logaz
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的基本的基本運(yùn)算,要求熟練掌握對(duì)數(shù)的運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=
2+i
2i-1
(i為虛數(shù)單位)的共軛復(fù)數(shù)是( 。
A、-i
B、i
C、
5
3
i
D、-
5
3
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求集合A和B,使得A∪B={1,2,…10},且集合A中所有元素之和等于集合B中所有元素之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,且(Sn+1+λ)an=(Sn+1)an+1對(duì)一切n∈N*都成立.
(1)若λ=1,求數(shù)列{an}的通項(xiàng)公式;
(2)求λ的值,使數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試求最小的正數(shù)a,使得存在正數(shù)b,當(dāng)x∈[0,1]時(shí),恒有
1-x
+
1+x
≤2-bxa
;對(duì)于所求得的a,確定滿(mǎn)足上述不等式的最大正數(shù)b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},{bn}都是等差數(shù)列,且a1≠b1,它們的前n項(xiàng)的和分別為Sn,Tn,若對(duì)一切n∈N,有Sn+3=Tn
(1)分別寫(xiě)出一個(gè)符合條件的數(shù)列{an}和{bn};
(2)若a1+b1=1,數(shù)列{Cn}滿(mǎn)足:Cn=4an+λ(-1)n-1•2bn,且當(dāng)n∈N時(shí),Cn+1≥Cn恒成立,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)cos﹙x+
π
4
﹚=
3
4
,
17π
12
<x<
4
,求cos2x•
1-tanx
1+tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)f(x)的解析式為f(x)=
2
x
-1,若x∈(0,6]時(shí),f(x)≥ax恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求數(shù)集{a,a2-a}中實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案