【題目】將集合M={1,2,3,…15}表示為它的5個三元子集(三元集:含三個元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個三元集的元素之和為;請寫出滿足上述條件的集合M的5個三元子集 . (只寫出一組)

【答案】24;{1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}

【分析】先根據(jù)題意列出集合M的5個三元子集,再進行求和即可.
【解析】解:每個三元集的元素之和為24;滿足已知條件的集合M的5個三元子集:{1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}.

所以答案是:24;{1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}.

【考點精析】解答此題的關鍵在于理解集合的并集運算的相關知識,掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于(
A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ (a∈R).
(1)若f(x)在x=2處取得極小值,求a的值;
(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )

A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工藝品廠要設計一個如圖1所示的工藝品,現(xiàn)有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1
(Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓G: 的兩個焦點分別為F1和F2 , 短軸的兩個端點分別為B1和B2 , 點P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當b變化時,給出下列三個命題: ①點P的軌跡關于y軸對稱;
②存在b使得橢圓G上滿足條件的點P僅有兩個;
③|OP|的最小值為2,
其中,所有正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 下列四個命題: ①f(f(1))>f(3);
x0∈(1,+∞), ;
③f(x)的極大值點為x=1;
x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正確的有 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于(  )

A.55π
B.75π
C.77π
D.65π

查看答案和解析>>

同步練習冊答案