【題目】如圖,已知三棱柱中,側棱與底面垂直,且,,、分別是、的中點,點在線段上,且.
(1)求證:不論取何值,總有;
(2)當時,求平面與平面所成二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】某客戶準備在家中安裝一套凈水系統,該系統為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.
其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現需決策安裝凈水系統的同時購買濾芯的數量,為此參考了根據100套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.
表1:一級濾芯更換頻數分布表
一級濾芯更換的個數 | 8 | 9 |
頻數 | 60 | 40 |
圖2:二級濾芯更換頻數條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16的概率;
(2)記表示該客戶的凈水系統在使用期內需要更換的二級濾芯總數,求的分布列及數學期望;
(3)記分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若,且,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直角梯形ABCD中,,,,將直角梯形ABCD(及其內部)以AB所在直線為軸順時針旋轉90°,形成如圖所示的幾何體,其中M為的中點.
(1)求證:;
(2)求異面直線BM與EF所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】焦點在x軸上的橢圓C:經過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數,使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知圓,圓.
(1)證明:圓與圓有公共點,并求公共點的軌跡的方程;
(2)已知點,過點且斜率為的直線與(1)中軌跡相交于兩點,記直線的斜率為,直線的斜率為,是否存在實數使得為定值?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線上的點到點的距離比到直線的距離小,為坐標原點.
(1)過點且傾斜角為的直線與曲線交于、兩點,求的面積;
(2)設為曲線上任意一點,點,是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com