【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.
(1)求角A;
(2)若a=2,△ABC的周長(zhǎng)為6,求△ABC的面積.
【答案】(1); (2).
【解析】
(1)利用正弦定理邊角互化與和差角公式化簡(jiǎn)求即可.
(2)利用a=2,△ABC的周長(zhǎng)為6可求出b+c=4.再用余弦定理與化簡(jiǎn)出關(guān)于的表達(dá)式從而得出再求解面積即可.
(1)∵,
∴由正弦定理可得3sinAcosBsinBsinA=3sinC,
∵sinC=sin(A+B)=sinAcosB+sinBcosA,
∴sinBsinA=3cosAsinB,
∵sinB≠0,∴sinA=3cosA,可得tanA,
∵A∈(0,π),∴A.
(2)∵A,a=2,△ABC的周長(zhǎng)為6,
∴b+c=4,
∴由余弦定理a2=b2+c2﹣2bccosA,可得4=b2+c2﹣bc=(b+c)2﹣3bc=16﹣3bc,解得bc=4,
∴S△ABCbcsinA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對(duì)于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( 。
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷(xiāo)售量躍居全球第二名,某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這人的手機(jī)價(jià)格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機(jī)價(jià)格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機(jī)價(jià)格在和的顧客中選取人,并從這人中隨機(jī)抽取人進(jìn)行回訪,求抽取的人手機(jī)價(jià)格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷(xiāo)售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷(xiāo)量,李明對(duì)這四種水果進(jìn)行促銷(xiāo):一次購(gòu)買(mǎi)水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購(gòu)買(mǎi)草莓和西瓜各1盒,需要支付__________元;
②在促銷(xiāo)活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷(xiāo)前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{bn}的通項(xiàng)公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量單位:萬(wàn)只與相應(yīng)年份序號(hào)的數(shù)據(jù)表和散點(diǎn)圖如圖所示,根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)單位:個(gè)關(guān)于x的回歸方程.
年份序號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬(wàn)只 |
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程參考統(tǒng)計(jì)量:,;
試估計(jì):該縣第一年養(yǎng)殖山羊多少萬(wàn)只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com