【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購(gòu)買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購(gòu)買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(題文)已知橢圓的離心率為,過(guò)右焦點(diǎn)且斜率為1的直線交橢圓于A,B兩點(diǎn), N為弦AB的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求直線ON的斜率;
(2)求證:對(duì)于橢圓上的任意一點(diǎn)M,都存在,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】容器中有種粒子,若相同種類的兩顆粒子發(fā)生碰撞,則變成一顆粒子;不同種類的兩顆粒子發(fā)生碰撞,會(huì)變成另外一種粒子. 例如,一顆粒子和一顆粒子發(fā)生碰撞則變成一顆粒子.現(xiàn)有粒子顆,粒子顆,粒子顆,如果經(jīng)過(guò)各種兩兩碰撞后,只剩顆粒子. 給出下列結(jié)論:
① 最后一顆粒子可能是粒子
② 最后一顆粒子一定是粒子
③ 最后一顆粒子一定不是粒子
④ 以上都不正確
其中正確結(jié)論的序號(hào)是________.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是底面邊長(zhǎng)為1的正三棱錐,分別為棱長(zhǎng)上的點(diǎn),截面底面,且棱臺(tái)與棱錐的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1)證明:為正四面體;
(2)若,求二面角的大。唬ńY(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)的體積為,是否存在體積為且各棱長(zhǎng)均相等的直平行六面體,使得它與棱臺(tái)有相同的棱長(zhǎng)和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.
(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺(tái),本題中棱臺(tái)的體積等于棱錐的體積減去棱錐的體積.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列四個(gè)命題:
①等差數(shù)列一定是單調(diào)數(shù)列;
②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;
③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列.
④記等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的最大值一定在處達(dá)到.
其中正確的命題有_____.(填寫(xiě)所有正確的命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過(guò)點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過(guò)伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)為何值時(shí),.①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com