【題目】為慶祝國(guó)慶節(jié),某中學(xué)團(tuán)委組織了歌頌祖國(guó),愛(ài)我中華知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名,將其成績(jī)(成績(jī)均為整數(shù))分成[40,50)[50,60),[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問(wèn)題:

1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)

【答案】(1)第四組的頻率為0.3,直方圖見(jiàn)解析;(2)眾數(shù):75,中位數(shù):,均分為71

【解析】

(1)由各組的頻率和等于1求解第四組頻率,再補(bǔ)全直方圖即可

2)利用最高的矩形得眾數(shù);利用左右面積相等求中位數(shù);利用組中值估算抽樣學(xué)生的平均分

(1)因?yàn)楦鹘M的頻率和等于1,所以第四組的頻率為.

補(bǔ)全的頻率分布直方圖如圖所示.

(2)眾數(shù)為:,

設(shè)中位數(shù)為x,則

抽取學(xué)生的平均分約為45×0.155×0.1565×0.1575×0.385×0.2595×0.0571(),所以可估計(jì)這次考試的平均分為71分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)營(yíng)的消費(fèi)品進(jìn)價(jià)每件14元,月銷售量(百件)與銷售價(jià)格p(元)的關(guān)系如下圖,每月各種開(kāi)支2000.

(1)寫出月銷售量(百件)與銷售價(jià)格p(元)的函數(shù)關(guān)系;

(2)寫出月利潤(rùn)y(元)與銷售價(jià)格p(元)的函數(shù)關(guān)系:

(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上頂點(diǎn)為點(diǎn),右焦點(diǎn)為.延長(zhǎng)交橢圓于點(diǎn),且滿足.

(1)試求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)作與軸不重合的直線和橢圓交于兩點(diǎn),設(shè)橢圓的左頂點(diǎn)為點(diǎn),且直線分別與直線交于兩點(diǎn),記直線的斜率分別為,則之積是否為定值?若是,求出該定值;若不是,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列各組命題,其中的充分必要條件的是(

有兩個(gè)不同的零點(diǎn)

;是偶函數(shù);

;

;,,

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某摸球游戲的規(guī)則如下:從裝有5個(gè)大小、形狀完全相同的小球的盒中摸球(其中3個(gè)紅球、2個(gè)黃球),每次摸一個(gè)球記錄顏色并放回,若摸出紅球記1分,摸出黃球記2分.

1)求摸球三次得分為5的概率;

2)設(shè)ξ為摸球三次所得的分?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCPE中,平面PAC⊥平面ABC,ACBC,PEBC,2PEBCM是線段AE的中點(diǎn),N是線段PA上一點(diǎn),且滿足ANAP(0<<1).

(Ⅰ)若,求證:MNPC;

(Ⅱ)是否存在,使得三棱錐MACN與三棱錐BACP的體積比為1:12?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為數(shù)列的前項(xiàng)和,,平面內(nèi)三個(gè)不共線的向量,,滿足,若點(diǎn),,在同一直線上,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是菱形.

1)若,求證:平面;

2,分別是,上的點(diǎn),若平面,,求的值;

3)若,平面平面,,判斷是否為等腰三角形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案