【題目】已知四棱錐的底面是菱形.
(1)若,求證:平面;
(2),分別是,上的點,若平面,,求的值;
(3)若,平面平面,,判斷是否為等腰三角形?并說明理由.
【答案】(1)證明見解析;(2);(3)不可能為等腰三角形,理由見解析.
【解析】
(1)作輔助線,利用線面垂直的判定定理證明即可;
(2)過作交于,連接,利用平行的傳遞性以及線面平行的性質得出四邊形為平行四邊形,進而得出,結合相似三角形的性質得出的值;
(3)作交于點,連接,由面面垂直,線面垂直的性質定理得出,根據(jù)直角三角形斜邊大于直角邊,鈍角三角形鈍角所對的邊大于另外兩邊,得出,,由等腰三角形的性質得出,進而得到,即可得出不可能為等腰三角形.
(1)證明:設,連接
因為四邊形是菱形,所以,.
因為,所以.
因為,平面,所以平面.
(2)過作交于,連接,
在菱形中,,,所以,所以,,,共面.
因為平面,平面,平面平面
所以.
所以四邊形為平行四邊形.所以.
因為,所以.
(3)不可能為等腰三角形,理由如下:
作交于點,連接
因為平面平面,平面平面,平面
所以平面.
所以.
因為,,平面
所以平面
因為平面,所以.
所以,且.
所以.所以.
在菱形中,若,所以是等邊三角形.
所以為的中點,所以,
∴
即.
所以不可能為等腰三角形.
科目:高中數(shù)學 來源: 題型:
【題目】為慶祝國慶節(jié),某中學團委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中且,.
(1)若,且時,的最小值是,求實數(shù)的值;
(2)若,且時,有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點.
(1)求證:;
(2)若平面PAC,則側棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE:EC;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過,兩點,且圓心在直線:上.
(1)求圓的方程;
(2)從軸上一個動點向圓作切線,求切線長的最小值及對應切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù),數(shù)列的前n項和為,,.
(1)求數(shù)列的通項公式;
(2)若,且數(shù)列是單調遞增數(shù)列,求實數(shù)a的取值范圍;
(3)若,,對于任意給定的正整數(shù)k,是否都存在正整數(shù)p、q,使得?若存在,試求出p、q的一組值(不論有多少組,只要求出一組即可);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com