【題目】已知平面有一個公共點,直線滿足:,則直線不可能滿足以下哪種關系( )
A.兩兩平行B.兩兩異面C.兩兩垂直D.兩兩相交
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某自來水公司要在公路兩側(cè)鋪設水管,公路為東西方向,在路北側(cè)沿直線鋪設線路l1,在路南側(cè)沿直線鋪設線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設水管的費用為每米1萬元,穿過公路的EF部分鋪設水管的費用為每米2萬元,設∠EFB= α,矩形區(qū)域內(nèi)的鋪設水管的總費用為W.
(1)求W關于α的函數(shù)關系式;
(2)求W的最小值及相應的角α.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(shù)(),表示對該學科知識的掌握程度,正實數(shù)a與學科知識有關.
(1) 證明:當時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學科甲、乙、丙對應的a的取值區(qū)間分別為,,
.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標原點,則關于函數(shù)有下述四個結(jié)論:
①的最小正周期為 ②若的最大值為2,則
③在有兩個零點 ④在區(qū)間上單調(diào)
其中所有正確結(jié)論的標號是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)判斷函數(shù)在時單調(diào)性并證明;
(3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率作了調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
(1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調(diào)整后小明的實際收入比調(diào)整前增加了多少?
(2)某稅務部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
先從收入在及的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機變量表示抽到作為宣講員的收入在元的人數(shù),求的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com