【題目】已知函數(shù)在處取得極小值.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).
【答案】(1)(2)當(dāng)時(shí),函數(shù)沒有零點(diǎn);當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù)結(jié)合導(dǎo)數(shù)與極值之間的關(guān)系得到,求解即可得到結(jié)果;(2)求出函數(shù)的導(dǎo)數(shù),研究函數(shù)的極值和單調(diào)性,根據(jù)最值的符號(hào),分別討論在各個(gè)區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).
(1)函數(shù)的定義域?yàn)?/span>,
函數(shù)在處取得極小值
,得
當(dāng)時(shí),
則時(shí),;當(dāng)時(shí),
在上單調(diào)遞減,在上單調(diào)遞增
時(shí),函數(shù)取得極小值,符合題意
(2)由(1)知,函數(shù),定義域?yàn)?/span>
則:
令,得;令,得
在上單調(diào)遞減,在上單調(diào)遞增
當(dāng)時(shí),函數(shù)取得最小值
當(dāng),即時(shí),函數(shù)沒有零點(diǎn);
當(dāng),即時(shí),函數(shù)有一個(gè)零點(diǎn);
當(dāng),即時(shí),
存在,使
在上有一個(gè)零點(diǎn)
設(shè),則
當(dāng)時(shí),,則在上單調(diào)遞減
,即當(dāng)時(shí),
當(dāng)時(shí),
取,則
存在,使得
在上有一個(gè)零點(diǎn)
在上有兩個(gè)零點(diǎn),
綜上可得,當(dāng)時(shí),函數(shù)沒有零點(diǎn);當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過M(,1),N(,1)兩點(diǎn),且圓心C在直線x+y﹣3=0上,過點(diǎn)A(﹣1,0)的動(dòng)直線l與圓C相交于P、Q兩點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)當(dāng)|PQ|=4時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和橢圓. 直線與橢圓交于不同的兩點(diǎn).
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當(dāng)時(shí),求的面積;
(Ⅲ)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某種細(xì)菌的適宜生長溫度為,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量/個(gè) | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)請繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型(結(jié)果精確到0.1);
(2)當(dāng)溫度為時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?
參考公式:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評價(jià)空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對應(yīng)如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( )
A. 整體上看,這個(gè)月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半個(gè)月的空氣質(zhì)量
C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,,,平面平面.
(1)證明:平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)為,,且過點(diǎn),直線交曲線于,兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;
(3)若直線過點(diǎn),求面積的最大值,以及取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在點(diǎn)處的切線與直線平行.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè).
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當(dāng)時(shí),判斷函數(shù)有幾個(gè)零點(diǎn),并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com