【題目】如圖所示,該幾何體是由一個(gè)直三棱柱 和一個(gè)正四棱錐 組合而成, ,

(Ⅰ)證明:平面 平面 ;
(Ⅱ)求正四棱錐 的高 ,使得二面角 的余弦值是

【答案】證明:(Ⅰ)正三棱柱 中, 平面 ,
所以 ,又 , ,
所以 平面 , 平面
所以平面 平面
(Ⅱ)由(Ⅰ)知 平面 ,以 為原點(diǎn), , , 方向?yàn)? , , 軸建立空間直角坐標(biāo)系 ,設(shè)正四棱錐 的高為 , ,則 , , , ,
設(shè)平面 的一個(gè)法向量 ,
,則 ,所以
設(shè)平面 的一個(gè)法向量 ,則
,則 ,所以
二面角 的余弦值是
所以 ,
解得
【解析】(1)證明:AD⊥面ABFE,即可證明面PAD⊥面ABFE,(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法建立方程關(guān)系即可求正四棱錐P-ABCD的高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù) 上的最大值與最小值的差為 ,求 的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn) ,焦點(diǎn)在 軸上,離心率為 的橢圓過點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與 軸的非負(fù)半軸交于點(diǎn) ,過點(diǎn) 作互相垂直的兩條直線,分別交橢圓于點(diǎn) , 兩點(diǎn),連接 ,求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面為等腰梯形的四棱錐 中, 平面 的中點(diǎn), , .

(1)證明: 平面 ;
(2)若 ,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為半圓 的直徑,點(diǎn) 是半圓弧上的兩點(diǎn), , .曲線 經(jīng)過點(diǎn) ,且曲線 上任意點(diǎn) 滿足: 為定值.

(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點(diǎn) 的直線 與曲線 交于不同的兩點(diǎn) ,求 面積最大時(shí)的直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 與橢圓 有且只有一個(gè)公共點(diǎn) .
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線 CA,B兩點(diǎn),且OAOB(O為原點(diǎn)),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱 中, 分別是 的中點(diǎn).

(Ⅰ)求證: 平面 ;
(Ⅱ)若 上一點(diǎn) 滿足 ,求 所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖(N∈N*),那么輸出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)研究函數(shù)的極值點(diǎn);

(2)當(dāng)時(shí),若對(duì)任意的,恒有,求的取值范圍;

(3)證明:.

查看答案和解析>>

同步練習(xí)冊答案