【題目】若函數(shù)f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.1
C.2
D.4

【答案】D
【解析】 ,
,又本題中 ,在區(qū)間 上的值域為 ,即無論 取怎樣的正實數(shù)都應有最大值與最小值的和是一個確定的值,故可令 ,由于 在區(qū)間 上是一個增函數(shù),故 ,所以答案是:D.
【考點精析】解答此題的關鍵在于理解函數(shù)單調性的性質的相關知識,掌握函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集,以及對函數(shù)的值的理解,了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且以兩焦點為直徑的圓的內接正方形面積為2.
(1)求橢圓 的標準方程;
(2)若直線 與橢圓 相交于 , 兩點,在 軸上是否存在點 ,使直線 的斜率之和 為定值?若存在,求出點 坐標及該定值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體 的棱長為1, 分別是棱 的中點,過 的平面與棱 分別交于點 .設 ,

①四邊形 一定是菱形;② 平面 ;③四邊形 的面積 在區(qū)間 上具有單調性;④四棱錐 的體積為定值.
以上結論正確的個數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對圓 上任意一點 , 的取值與 無關,則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .(Ⅰ)求函數(shù) 的單調遞增區(qū)間;
(Ⅱ)函數(shù) 上的最大值與最小值的差為 ,求 的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,直線 的斜率之積為 .
(Ⅰ)求頂點 的軌跡方程 ;
(Ⅱ)設動直線 ,點 關于直線 的對稱點為 ,且 點在曲線 上,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線 的焦點為 ,準線為 ,點 在拋物線 上,已知以點 為圓心, 為半徑的圓 兩點.
(Ⅰ)若 , 的面積為4,求拋物線 的方程;
(Ⅱ)若 三點在同一條直線 上,直線 平行,且 與拋物線 只有一個公共點,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取 名同學(男 人,女 人),給所有同學幾何題和代數(shù)題各一題,讓各位同學只能自由選擇其中一道題進行解答.選題情況如下表(單位:人):

幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50

幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50

附表及公式:

(1)能否據(jù)此判斷有 的把握認為視覺和空間能力與性別有關?
(2)現(xiàn)從選擇做幾何題的 名女生中,任意抽取兩人,對她們的答題情況進行全程研究,記甲、乙兩位女生被抽到的人數(shù)為 ,求 的分布列和 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 與橢圓 有且只有一個公共點 .
(1)求橢圓C的標準方程;
(2)若直線 CA,B兩點,且OAOB(O為原點),求b的值.

查看答案和解析>>

同步練習冊答案