【題目】習(xí)大大構(gòu)建的“一帶一路”經(jīng)濟帶的發(fā)展規(guī)劃已經(jīng)得到了越來越多相關(guān)國家的重視和參與.岳陽市旅游局順潮流、乘東風(fēng),聞訊而動,決定利用旅游資源優(yōu)勢,擼起袖子大干一場.為了了解游客的情況,以便制定相應(yīng)的策略.在某月中隨機抽取甲、乙兩個景點各10天的游客數(shù),畫出莖葉圖如下:
(1)若景點甲中的數(shù)據(jù)的中位數(shù)是125,景點乙中的數(shù)據(jù)的平均數(shù)是124,求的值;
(2)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù).今從這段時期內(nèi)任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.
【答案】(1) , ;(2) ;(3).
【解析】試題分析:(1)利用景點甲中的數(shù)據(jù)的中位數(shù)是,景點乙中的數(shù)據(jù)的平均數(shù)是, 直接求解的值;(2)游客數(shù)超過人的的天數(shù)是獨立重復(fù)試驗,根據(jù)獨立重復(fù)試驗概率公式求解即可,(3)求出的所有可能的取值為 ,求出概率得到分布列,然后求解期望即可.
試題解析:(1)由題意知;
(2)由題意知,因為景點甲的每一天的游客數(shù)超過120人的概率為,
任取4天,即是進行了4次獨立重復(fù)試驗,其中有次發(fā)生,
故隨機變量服從二項分布,則;
(3)從圖中看出:景點甲的數(shù)據(jù)中符合條件的只有1天,景點乙的數(shù)據(jù)中符合條件的有4天,所以在景點甲中被選出的概率為,在景點乙中被選出的概率為.
由題意知: 的所有可能的取值為0,1,2.
則
所得分布列為:
0 | 1 | <>2 | |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)為偶函數(shù)且圖象經(jīng)過原點,其導(dǎo)函數(shù)的圖象過點.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中m為常數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)過點 ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為2,4,4.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(I)設(shè)A為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件A發(fā)生的概率;
( II)設(shè)X為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=log (2x﹣x2)的單調(diào)遞減區(qū)間為( )
A.(0,2)
B.(﹣∞,1]
C.[1,2)
D.(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年出現(xiàn)各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(1)請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大的把握認為三高疾病與性別有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|3≤3x≤27},B={x|log2x>1}. (Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若CA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為( )
A.3+2
B.3+2
C.7
D.11
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com