【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).
【答案】
(1)解:設(shè)x>0,則﹣x<0.又因為當(dāng)x≤0時,f(x)=x2+2x,
所以f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,又因為f(﹣x)=f(x).
所以x>0時,f(x)=x2﹣2x.
所以f(x)=
(2)解:函數(shù)g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),f(x)= .
∴g(x)=x2+2(1﹣a)x+2.x∈[1,2],
①當(dāng)a﹣1≤1時,即a≤2,g(x)min=g(1)=5﹣2a
②當(dāng)1<a﹣1<2時,即2<a<3,g(x)min=g(a﹣1)=﹣a2+2a+1
③當(dāng)a﹣1≥2時,即a≥3,g(x)min=g(2)=10﹣4a
綜上:h(a)=
【解析】(1)利用函數(shù)的奇偶性曲線函數(shù)的解析式即可.(2)利用分段函數(shù)以及二次函數(shù)的性質(zhì),通過分類討論求解函數(shù)的最小值即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲),還要掌握函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD是某小區(qū)戶外活動空地的平面示意圖,其中AB=50米,AD=100米,現(xiàn)擬在直角三角形OMN內(nèi)栽植草坪供兒童踢球娛樂(其中,點(diǎn)O為AD的中點(diǎn),OM⊥ON,點(diǎn)M在AB上,點(diǎn)N在CD上),將破舊的道路AM重新鋪設(shè).已知草坪成本為每平方米20元,新道路AM成本為每米500元,設(shè)∠OMA=θ,記草坪栽植與新道路鋪設(shè)所需的總費(fèi)用為f(θ).
(1)求f(θ)關(guān)于θ函數(shù)關(guān)系式,并寫出定義域;
(2)為節(jié)約投入成本,當(dāng)tanθ為何值時,總費(fèi)用 f(θ)最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: ax+by=1(其中a,b是實數(shù)) 與圓:x2+y2=1(O是坐標(biāo)原點(diǎn))相交于A,B兩點(diǎn),且△AOB是直角三角形,點(diǎn)P(a,b)是以點(diǎn)M(0,1)為圓心的圓M上的任意一點(diǎn),則圓M的面積最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,|AB|=8,AC與BC邊所在直線的斜率之積為定值m,
(1)求動點(diǎn)C的軌跡方程;
(2)當(dāng)m=1時,過點(diǎn)E(0,1)的直線l與曲線C相交于P、Q兩點(diǎn),求P、Q兩點(diǎn)的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】習(xí)大大構(gòu)建的“一帶一路”經(jīng)濟(jì)帶的發(fā)展規(guī)劃已經(jīng)得到了越來越多相關(guān)國家的重視和參與.岳陽市旅游局順潮流、乘東風(fēng),聞訊而動,決定利用旅游資源優(yōu)勢,擼起袖子大干一場.為了了解游客的情況,以便制定相應(yīng)的策略.在某月中隨機(jī)抽取甲、乙兩個景點(diǎn)各10天的游客數(shù),畫出莖葉圖如下:
(1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求的值;
(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長一段時期內(nèi)的樣本數(shù)據(jù).今從這段時期內(nèi)任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(a,b為常數(shù))滿足條件,且方程有兩個相等的實數(shù)根.
(1)求的解析式;
(2)是否存在實數(shù)(m<n),使得的定義域和值域分別為,如果存在,求出。不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )
A.y2=3x
B.y2=9x
C.y2= x
D.y2= x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com