【題目】海關(guān)對同時從A,B,C三個不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.
地區(qū) | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A,B,C各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.
【答案】(1)A,B,C分別是;(2).
【解析】
(1)根據(jù)分層抽樣的性質(zhì)即可得出抽取樣本中來自各地區(qū)商品的數(shù)量;
(2)設(shè)6件來自A,B,C三個地區(qū)的樣品分別為:A;B1,B2,B3;C1,C2.寫出抽取的這2件商品構(gòu)成的所有基本事件,并找出抽取的這2件商品來自相同地區(qū)包含的基本事件,根據(jù)古典概型的公式即可求解.
(1)因為樣本容量與總體中的個體數(shù)的比是
=,所以樣本中包含三個地區(qū)的個體數(shù)量分別是:50×=1,150×=3,100×=2.
所以A,B,C三個地區(qū)的商品被選取的件數(shù)分別是1,3,2.
(2)設(shè)6件來自A,B,C三個地區(qū)的樣品分別為:A;B1,B2,B3;C1,C2.則抽取的這2件商品構(gòu)成的所有基本事件為:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15個.
每個樣品被抽到的機(jī)會均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件D為“抽取的這2件商品來自相同地區(qū)”,
則事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4個.
所以P(D)=,即這2件商品來自相同地區(qū)的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求曲線在點處切線的方程;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x≥0時,f(x)≥mx-3恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在點處的切線為,若函數(shù)滿足(其中為函數(shù)的定義域,當(dāng)時,恒成立,則稱為函數(shù)的“轉(zhuǎn)折點”,已知函數(shù)在區(qū)間上存在一個“轉(zhuǎn)折點”,則的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 f(x)=(x﹣1)ex﹣ax2..
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若在處取得極大值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓E:1(a>b>0)上一動點P向圓O:x2+y2=b2引兩條切線PA,PB,切點分別是A,B.直線AB分別與x軸,y軸交于點M,N(O為坐標(biāo)原點).
(1)若在橢圓E上存在點P,滿足PA⊥PB,求橢圓E的離心率的取值范圍;
(2)求證:在橢圓E內(nèi),存在一點C滿足|CO|=|CA|=|CP|=|CB|;
(3)若橢圓E的短軸長為2,△MON面積的最小值為,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】又到了品嘗小龍蝦的季節(jié),小龍蝦近幾年來被稱作是“國民宵夜”風(fēng)靡國內(nèi)外.在巨大的需求市場下,湖北的小龍蝦產(chǎn)量占據(jù)了全國的半壁江山,湖北某地區(qū)近幾年的小龍蝦產(chǎn)量統(tǒng)計如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(萬噸) | 6.6 | 6.9 | 7.4 | 7.7 | 8 | 8.4 |
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結(jié)果保留小數(shù)點后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com