【題目】又到了品嘗小龍蝦的季節(jié),小龍蝦近幾年來被稱作是“國民宵夜”風(fēng)靡國內(nèi)外.在巨大的需求市場下,湖北的小龍蝦產(chǎn)量占據(jù)了全國的半壁江山,湖北某地區(qū)近幾年的小龍蝦產(chǎn)量統(tǒng)計(jì)如下表:

年份

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.9

7.4

7.7

8

8.4

1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位).

【答案】1;(28.76萬噸

【解析】

1)根據(jù)最小二乘法,計(jì)算回歸方程中的參數(shù),寫出回歸方程,注意參考數(shù)據(jù)的運(yùn)用,簡化運(yùn)算;

2)根據(jù)(1)中的回歸方程,預(yù)測可得結(jié)果.

1,.

.

,又.

關(guān)于的線性回歸方程為.

2)由(1)可得,當(dāng)年份為2019年時(shí),年份代碼,此時(shí),

所以,可預(yù)測2019年該地區(qū)小龍蝦的年產(chǎn)量約為8.76萬噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海關(guān)對同時(shí)從A,BC三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.

地區(qū)

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自AB,C各地區(qū)商品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角AB,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,函數(shù)是定義在上的奇函數(shù),且滿足.

(Ⅰ)確定的關(guān)系式,并求的解析式.

(Ⅱ)若數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且,是否存在實(shí)數(shù),使得對于任意的,都有恒成立?若存在,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民區(qū)有一個(gè)銀行網(wǎng)點(diǎn)(以下簡稱“網(wǎng)點(diǎn)”),網(wǎng)點(diǎn)開設(shè)了若干個(gè)服務(wù)窗口,每個(gè)窗口可以辦理的業(yè)務(wù)都相同,每工作日開始辦理業(yè)務(wù)的時(shí)間是8點(diǎn)30分,8點(diǎn)30分之前為等待時(shí)段.假設(shè)每位儲戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率都相等,且每位儲戶是否在該時(shí)段到網(wǎng)點(diǎn)相互獨(dú)立.根據(jù)歷史數(shù)據(jù),統(tǒng)計(jì)了各工作日在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計(jì)每工作日等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù)的平均值;

(2)假設(shè)網(wǎng)點(diǎn)共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率;

②儲戶都是按照進(jìn)入網(wǎng)點(diǎn)的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊(duì)辦理業(yè)務(wù).記“每工作日上午8點(diǎn)30分時(shí)網(wǎng)點(diǎn)每個(gè)服務(wù)窗口的排隊(duì)人數(shù)(包括正在辦理業(yè)務(wù)的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點(diǎn)至少需開設(shè)多少個(gè)服務(wù)窗口?

參考數(shù)據(jù):;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019超長三伏來襲,雖然大部分人都了解伏天不宜吃生冷食物,但隨著氣溫的不斷攀升,仍然無法阻擋冷飲品銷量的暴增.現(xiàn)在,某知名冷飲品銷售公司通過隨機(jī)抽樣的方式,得到其100家加盟超市3天內(nèi)進(jìn)貨總價(jià)的統(tǒng)計(jì)結(jié)果如下表所示:

組別(單位:百元)

頻數(shù)

3

11

20

27

26

13

(1)由頻數(shù)分布表大致可以認(rèn)為,被抽查超市3天內(nèi)進(jìn)貨總價(jià)μ近似為這100家超市3天內(nèi)進(jìn)貨總價(jià)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用正態(tài)分布,求

(2)(1)的條件下,該公司為增加銷售額,特別為這100家超市制定如下抽獎(jiǎng)方案:

m表示超市3天內(nèi)進(jìn)貨總價(jià)超過μ的百分點(diǎn),其中.,則該超市獲得1次抽獎(jiǎng)機(jī)會(huì);,則該超市獲得2次抽獎(jiǎng)機(jī)會(huì);,則該超市獲得3次抽獎(jiǎng)機(jī)會(huì);,則該超市獲得4次抽獎(jiǎng)機(jī)會(huì);,則該超市獲得5次抽獎(jiǎng)機(jī)會(huì);,則該超市獲得6次抽獎(jiǎng)機(jī)會(huì).另外,規(guī)定3天內(nèi)進(jìn)貨總價(jià)低于μ的超市沒有抽獎(jiǎng)機(jī)會(huì);

每次抽獎(jiǎng)中獎(jiǎng)獲得的獎(jiǎng)金金額為1000元,每次抽獎(jiǎng)中獎(jiǎng)的概率為.

設(shè)超市A參加了抽查,且超市A3天內(nèi)進(jìn)貨總價(jià)百元.X(單位:元)表示超市A獲得的獎(jiǎng)金總額,求X的分布列與數(shù)學(xué)期望.

附參考數(shù)據(jù)與公式:,若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求上的最小值;

2)求的極值點(diǎn);

3)若內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率利潤保費(fèi)收入)的頻率分布直方圖如圖所示:

(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;

(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當(dāng)作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險(xiǎn)產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷量.

查看答案和解析>>

同步練習(xí)冊答案