【題目】如圖,斜率為的直線交拋物線兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)等于0,求的值;

2)求的最大值.

【答案】18;2

【解析】

1)先根據(jù)點(diǎn)的坐標(biāo)得的值,然后將直線的方程與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,最后利用弦長公式求解;(2)先設(shè)出直線的方程,與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,再根據(jù)點(diǎn)的橫坐標(biāo)滿足的條件可求得滿足的關(guān)系式將直線的方程聯(lián)立,可求得點(diǎn)的橫坐標(biāo),將直線的方程與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,結(jié)合根與系數(shù)的關(guān)系、弦長公式、二次函數(shù)的最值即可求解.

解:(1 聯(lián)立得,

設(shè),則

2)設(shè)的方程為,代入,得,

,,

聯(lián)立得,

,

.所以,當(dāng)時(shí),取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長為2,離心率為

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知底面是邊長為2的菱形,平面,,,分別是棱的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)討論上的單調(diào)性;

2)當(dāng)時(shí),若存在正實(shí)數(shù),使得對(duì),都有,求的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周禮夏官馬質(zhì)》中記載馬量三物:一日戎馬,二日田馬,三日駑馬,其意思為馬按照品種可以分為三個(gè)等級(jí),一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設(shè)在唐朝的某個(gè)王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數(shù)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓CA、B兩點(diǎn),交y軸于M點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)我國古代的六藝文化,某夏令營主辦單位計(jì)劃利用暑期開設(shè)”“”“”“”“”“數(shù)六門體驗(yàn)課程,每周一門,連續(xù)開設(shè)六周.課程不排在第一周,課程不排在最后一周的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線l與曲線C相交于MN兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,四邊形為菱形,,為等腰直角三角形,,,則異面直線AB所成角的余弦值為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案