【題目】已知函數(shù)f(x)=
(1)若對 ,f(x) 恒成立,求a的取值范圍;
(2)已知常數(shù)a R,解關(guān)于x的不等式f(x) .
【答案】
(1)解:由題意可知 >O,a≥ 恒成立,即a≥( )max;
, ∴a≥
(2)解:①若a=O,則原不等式為-x≥0,故不等式的解集為{x|x≤0}.
②若a>0,△=1- 4a2
當 時,即 時,原不等式的解集為R.
當 ,即 時,方程 的兩根為 , ,
∴原不等式的解集為{x|x ,或x }.
③若a<0,△=1-4 .
當 ,即 ,原不等式的解集為{x| x }.
當 時, 時,原不等式化為 ,
∴原不等式的解集為{x|x=1}.
當 ,即 時,原不等式的解集為
綜上所述,當 時,原不等式的解集為R;
當 時,原不等式的解集為{x|x ,或x };
當a=0,原不等式為{x|x≤0}
當 時,原不等式的解集為{x| x };
當a= 時,原不等式的解集為{x|x=1};
當a 時,原不等式的解集為 .
【解析】(1)首先采用分離參變量的方法將a分離出來,轉(zhuǎn)化為函數(shù)恒成立問題,再用均值不等式求分式的最大值,即可得到。
(2)根據(jù)二次函數(shù)的性質(zhì),對系數(shù)a和進行分類,a分為大于0,小于0,等于0三種情況,分為大于0,小于等于0兩種情況。然后將解得的范圍整理即得。
科目:高中數(shù)學 來源: 題型:
【題目】已知以點為圓心的圓過點和,線段的垂直平分線交圓于點、,且,
(1)求直線的方程; (2)求圓的方程。
(3)設點在圓上,試探究使的面積為 8 的點共有幾個?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個涉及幾何體體積問題,意思是兩個等高的幾何體,如在同高處的截面積恒相等,則體積相等,設A,B為兩個等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為的函數(shù)滿足:,且對于任意實數(shù),恒有,當時,.
(1)求的值,并證明當時,;
(2)判斷函數(shù)在上的單調(diào)性并加以證明;
(3)若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行了數(shù)學測試,并從中隨機抽取了60名學生的成績(滿分100分)作為樣本,其中成績不低于80分的學生被評為優(yōu)秀生,得到成績分布的頻率分布直方圖如圖所示.
(I)若該所中學共有3000名學生,試利用樣本估計全校這次考試中優(yōu)秀生人數(shù);
(II)若在樣本中,利用分層抽樣的方法從成績不低于70分的學生中隨機抽取6人,再從中抽取3人,試求恰好抽中1名優(yōu)秀生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的前n項和為,且滿足,數(shù)列滿足,,且..
(1)求數(shù)列與的通項公式;
(2)求數(shù)列的前項的;
(3)將數(shù)列與的項相間排列構(gòu)成新數(shù)列,設新數(shù)列的前項和為,若對任意正整數(shù)n都有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com