【題目】將4名大學(xué)生隨機(jī)安排到A,B,C,D四個(gè)公司實(shí)習(xí).
(1)求4名大學(xué)生恰好在四個(gè)不同公司的概率;
(2)隨機(jī)變量X表示分到B公司的學(xué)生的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
【答案】(1);(2)分布列見解析,。
【解析】
(1)將4人安排四個(gè)公司中,共有44=256種不同放法,記“4個(gè)人恰好在四個(gè)不同的公司”為事件A,則事件A包含=24個(gè)基本事件,由此能求出4名大學(xué)生恰好在四個(gè)不同公司的概率;
(2)X的可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
(1)將4人安排四個(gè)公司中,共有44=256種不同放法.
記“4個(gè)人恰好在四個(gè)不同的公司”為事件A,
事件A共包含個(gè)基本事件,
所以,
所以4名大學(xué)生恰好在四個(gè)不同公司的概率.
(2)方法1:X的可能取值為0,1,2,3,4,
,,,
,.
所以X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
所以X的數(shù)學(xué)期望為:.
方法2:每個(gè)同學(xué)分到B公司的概率為,.
根據(jù)題意~,所以,4,
所以X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
所以X的數(shù)學(xué)期望為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線與x軸,y軸的交點(diǎn)分別為A,B,圓C以線段AB為直徑.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)且圓心C到l的距離為1,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過點(diǎn)且與直線相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)若,是曲線上的兩個(gè)點(diǎn)且直線過的外心,其中為坐標(biāo)原點(diǎn),求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖象在直線上方,求的取值范圍;
(3)若函數(shù),,是否存在實(shí)數(shù)使得的最小值為?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有成立,記.
(1)求數(shù)列與數(shù)列的通項(xiàng)公式;
(2)求證:①對(duì)恒成立.②對(duì)恒成立,其中為數(shù)列的前n項(xiàng)和.
(3)記,為的前n項(xiàng)和,求證:對(duì)任意正整數(shù)n,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面,底面是正方形,為中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:經(jīng)過點(diǎn).
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)設(shè)為原點(diǎn),過拋物線的焦點(diǎn)作斜率不為0的直線交拋物線于兩點(diǎn),,直線分別交直線,于點(diǎn)和點(diǎn).求證:以為直徑的圓經(jīng)過軸上的兩個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,,分別是和的中點(diǎn).
()求異面直線與所成角的余弦值.
()在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com