【題目】大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開(kāi)設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程,這兩年學(xué)習(xí)先修課程的學(xué)生都參加了高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分?jǐn)?shù)

人數(shù)

25

50

100

50

25

參加自主招生獲得通過(guò)的概率

0.9

0.8

0.6

0.4

0.3

(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫(xiě)相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

250

沒(méi)有學(xué)習(xí)大學(xué)先修課程

總計(jì)

150

(Ⅱ)已知今年全校有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)選項(xiàng)課程,并都參加了高校的自主招生考試,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的概率.

(ⅰ)在今年參與大學(xué)先修課程學(xué)習(xí)的學(xué)生中任取一人,求他獲得高校自主招生通過(guò)的概率;

(ⅱ)某班有4名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),設(shè)獲得高校自主招生通過(guò)的人數(shù)為,的分布列,試估計(jì)今年全校參加大學(xué)先修課程學(xué)習(xí)的學(xué)生獲得高校自主招生通過(guò)的人數(shù).

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:其中

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.

【解析】

(Ⅰ)根據(jù)題意填寫(xiě)列聯(lián)表,計(jì)算K2,對(duì)照臨界值得出結(jié)論;

(Ⅱ)(ⅰ)分成四類(lèi)情況,利用互斥概率加法公式計(jì)算即可;(ⅱ)設(shè)獲得高校自主招生通過(guò)的人數(shù)為,,從而得到的分布列及今年全校參加大學(xué)先修課程學(xué)習(xí)的學(xué)生獲得高校自主招生通過(guò)的人數(shù).

(Ⅰ)列聯(lián)表如下:

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

50

200

250

沒(méi)有學(xué)習(xí)大學(xué)先修課程

100

900

1000

總計(jì)

150

1100

1250

由列聯(lián)表可得

因此在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系.

(Ⅱ)(。┯深}意得所求概率為

.

(ⅱ)設(shè)獲得高校自主招生通過(guò)的人數(shù)為,

,,

的分布列為

0

1

2

3

4

估計(jì)今年全校參加大學(xué)先修課程的學(xué)生獲得大學(xué)自主招生通過(guò)的人數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

)求函數(shù)的解析式;

)求證:對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有;

)若過(guò)點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·開(kāi)封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時(shí),若輸出的是2,則判斷框內(nèi)的條件不可能是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】魚(yú)卷是泉州十大名小吃之一,不但本地人喜歡,而且深受外來(lái)游客的贊賞.小張從事魚(yú)卷生產(chǎn)和批發(fā)多年,有著不少來(lái)自零售商和酒店的客戶當(dāng)?shù)氐牧?xí)俗是農(nóng)歷正月不生產(chǎn)魚(yú)卷,客戶正月所需要的魚(yú)卷都會(huì)在上一年農(nóng)歷十二月底進(jìn)行一次性采購(gòu)小張把去年年底采購(gòu)魚(yú)卷的數(shù)量x(單位:箱)在的客戶稱為“熟客”,并把他們?nèi)ツ瓴少?gòu)的數(shù)量制成下表:

采購(gòu)數(shù)x

客戶數(shù)

10

10

5

20

5

(1)根據(jù)表中的數(shù)據(jù)作出頻率分布直方圖,并估計(jì)采購(gòu)數(shù)在168箱以上(含168箱)的“熟客”人數(shù);

(2)若去年年底“熟客”們采購(gòu)的魚(yú)卷數(shù)量占小張去年年底總的銷(xiāo)售量的,估算小張去年年底總的銷(xiāo)售量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

(3)由于魚(yú)卷受到游客們的青睞,小張做了一份市場(chǎng)調(diào)查,決定今年年底是否在網(wǎng)上出售魚(yú)卷,若不在網(wǎng)上出售魚(yú)卷,則按去年的價(jià)格出售,每箱利潤(rùn)為20元,預(yù)計(jì)銷(xiāo)售量與去年持平;若在網(wǎng)上出售魚(yú)卷,則需把每箱售價(jià)下調(diào)25元,且每下調(diào)m元()銷(xiāo)售量可增加1000m箱,求小張今年年底收入Y(單位:元)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查. 得到如下的統(tǒng)計(jì)結(jié)果.

1:男生上網(wǎng)時(shí)間與頻數(shù)分布表:

上網(wǎng)時(shí)間(分鐘)

人數(shù)

10

20

40

20

10

2:女生上網(wǎng)時(shí)間與頻數(shù)分布表:

上網(wǎng)時(shí)間(分鐘)

人數(shù)

5

25

30

25

15

完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用水清洗一份蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).

1)求的值,并解釋其實(shí)際意義;

2)現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問(wèn)用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的零點(diǎn),.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,已知,

1)求證:;

2)設(shè)上一點(diǎn),試確定的位置,使平面,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案