【題目】已知是函數(shù)的零點,.

(1)求實數(shù)的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

【答案】(Ⅰ)1;();()

【解析】

利用是函數(shù)的零點,代入解析式即可求實數(shù)的值;由不等式上恒成立,利用參數(shù)分類法,轉化為二次函數(shù)求最值問題,即可求實數(shù)的取值范圍;原方程等價于,利用換元法,轉化為一元二次方程根的個數(shù)進行求解即可.

是函數(shù)的零點,

,得;

,,

則不等式上恒成立,

等價為,

,

同時除以,得,

,則,

,

的最小值為0,

,即實數(shù)k的取值范圍;

原方程等價為,

,

兩邊同乘以

此方程有三個不同的實數(shù)解,

,則,

,

,

時,,得,

,要使方程有三個不同的實數(shù)解,

則必須有有兩個解,

,得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,

1)當m=4時,求 ;

2)若,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為3的正方形所在的平面與等腰直角三角形所在的平面互相垂直,,設.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,過點的直線與橢圓相交與兩點,且.

(1)求橢圓的離心率;

(2)求直線的斜率;

(3)設點與點關于坐標原點對稱,直線上有一點的外接圓上,且,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點

1)求的值并求函數(shù)的值域;

2)若關于的方程有實根,求實數(shù)的取值范圍;

3)若函數(shù),則是否存在實數(shù),對任意,存在使成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017 年成交的二手車的交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.在圖1對使用時間的分組中,將使用時間落入各組的頻率視為概率.

(1)記“在2017年成交的二手車中隨機選取一輛,該車的使用年限在”,為事件,試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖,其中 (單位:年)表示二手車的使用時間,(單位:萬元)表示相應的二手車的平均交易價格.

由散點圖判斷,可采用作為二手車平均交易價格關于其使用年限的回歸方程,相關數(shù)據(jù)如下表(表中):

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關于的回歸方程;

②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含 8年)的二手車收取成交價格的傭金. 在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

同步練習冊答案