設(shè)函數(shù)f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.
【答案】分析:(1)當(dāng)a=-1,原不等式變?yōu)椋簗x-1|+|x+1|≥3,下面利用對(duì)值幾何意義求解,利用數(shù)軸上表示實(shí)數(shù)-左側(cè)的點(diǎn)與表示實(shí)數(shù)右側(cè)的點(diǎn)與表示實(shí)數(shù)-1與1的點(diǎn)距離之和不小3,從而得到不等式解集.
(2)欲求當(dāng)x∈R,f(x)≥2,a的取值范圍,先對(duì)a進(jìn)行分類(lèi)討論:a=1;a<1;a>1.對(duì)后兩種情形,只須求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要條件是|a-1|≥2即可求得結(jié)果.
解答:解:(1)當(dāng)a=-1時(shí),f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3
據(jù)絕對(duì)值幾何意義求解,|x-1|+|x+1|≥3幾何意義,是數(shù)軸上表示實(shí)數(shù)x的點(diǎn)距離實(shí)數(shù)1,-1表示的點(diǎn)距離之和不小3,
由于數(shù)軸上數(shù)-左側(cè)的點(diǎn)與數(shù)右側(cè)的點(diǎn)與數(shù)-1與1的距離之和不小3,
所以所求不等式解集為(-∞,-]∪[,+∞)
(2)由絕對(duì)值的幾何意義知,數(shù)軸上到1的距離與到a的距離之和大于等于2恒成立,則1與a之間的距離必大于等于2,從而有a∈(-∞,-1]∪[3,+∞)
點(diǎn)評(píng):本小題主要考查絕對(duì)值不等式、不等式的解法、充要條件等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、分類(lèi)討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案