【題目】已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,點(diǎn)在線段上,且.
(1)求點(diǎn)的軌跡方程;
(2)動(dòng)直線與交于不同的兩點(diǎn),,且的面積為,其中為坐標(biāo)原點(diǎn),證明為定值.
【答案】(1)(2)證明見(jiàn)解析;
【解析】
(1)設(shè),根據(jù)點(diǎn)在線段上,且,得到,的坐標(biāo),再由建立x,y方程即可所求.
(2)當(dāng)直線的斜率不存在時(shí),、兩點(diǎn)關(guān)于軸對(duì)稱,根據(jù)在橢圓上和,求得坐標(biāo)即可,當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,將代入方程中,利用弦長(zhǎng)公式求得,點(diǎn)到直線的距離,由得到k,m的關(guān)系,再利用韋達(dá)定理求解即可.
(1)設(shè),
因?yàn)辄c(diǎn)在線段上,且,
所以,,
因?yàn)?/span>,
所以,
即,
所以點(diǎn)的軌跡的方程為.
(2)①當(dāng)直線的斜率不存在時(shí),、兩點(diǎn)關(guān)于軸對(duì)稱,
所以,.
因?yàn)?/span>,在橢圓上,所以有,
又因?yàn)?/span>,
所以,
解得,,
此時(shí),,
②當(dāng)直線的斜率存在時(shí),設(shè)其方程為,由題意.
將代入方程中,
整理得,
①
,,
則.
因?yàn)辄c(diǎn)到直線的距離為,
所以,
得且符合①式,
此時(shí),,
,
所以,
綜上所述,(定值)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行了科學(xué)防疫知識(shí)競(jìng)賽.經(jīng)過(guò)選拔,甲、乙、丙三位選手進(jìn)入了最后角逐.他們還將進(jìn)行四場(chǎng)知識(shí)競(jìng)賽.規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分依次為a,b,c(,且a,b,);選手總分為各場(chǎng)得分之和.四場(chǎng)比賽后,已知甲最后得分為16分,乙和丙最后得分都為8分,且乙只有一場(chǎng)比賽獲得了第一名,則下列說(shuō)法正確的是( )
A.每場(chǎng)比賽的第一名得分a為4
B.甲至少有一場(chǎng)比賽獲得第二名
C.乙在四場(chǎng)比賽中沒(méi)有獲得過(guò)第二名
D.丙至少有一場(chǎng)比賽獲得第三名
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解該校學(xué)生“停課不停學(xué)”的網(wǎng)絡(luò)學(xué)習(xí)效率,隨機(jī)抽查了高一年級(jí)100位學(xué)生的某次數(shù)學(xué)成績(jī),得到如圖所示的頻率分布直方圖:
(1)估計(jì)這100位學(xué)生的數(shù)學(xué)成績(jī)的平均值.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)根據(jù)整個(gè)年級(jí)的數(shù)學(xué)成績(jī),可以認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)近似地服從正態(tài)分布經(jīng)計(jì)算,(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為10.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任抽取一位學(xué)生,求他的數(shù)學(xué)成績(jī)恰在64分到94分之間的概率.
參考數(shù)據(jù):若隨機(jī)變量,則,,
(3)該年級(jí)1班的數(shù)學(xué)老師為了能每天督促學(xué)生的網(wǎng)絡(luò)學(xué)習(xí),提高學(xué)生每天的作業(yè)質(zhì)量及學(xué)習(xí)數(shù)學(xué)的積極性,特意在微信上設(shè)計(jì)了一個(gè)每日作業(yè)小程序,每當(dāng)學(xué)生提交的作業(yè)獲得優(yōu)秀時(shí),就有機(jī)會(huì)參與一次小程序中“玩游戲,得獎(jiǎng)勵(lì)積分”的活動(dòng),開(kāi)學(xué)后可根據(jù)獲得積分的多少領(lǐng)取老師相應(yīng)的小獎(jiǎng)品.小程序頁(yè)面上有一列方格,共15格,剛開(kāi)始有只小兔子在第1格,每點(diǎn)一下游戲的開(kāi)始按鈕,小兔子就沿著方格跳一下,每次跳1格或跳2格,概率均為,依次點(diǎn)擊游戲的開(kāi)始按鈕,直到小兔子跳到第14格(獎(jiǎng)勵(lì)0分)或第15格(獎(jiǎng)勵(lì)5分)時(shí),游戲結(jié)束,每天的積分自動(dòng)累加,設(shè)小兔子跳到第格的概率為,試證明是等比數(shù)列,并求的值.(獲勝的概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,A1D與AD1交于點(diǎn)E,AA1=AD=2AB=4.
(1)證明:AE⊥平面ECD.
(2)求點(diǎn)C1到平面AEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周碑算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小正三角形組成的一個(gè)大正三角形,設(shè),若在大正三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正三角形的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知四邊形AA1C1C為矩形,AA1=6,AB=AC=4,∠BAC=∠BAA1=60°,∠A1AC的角平分線AD交CC1于D.
(1)求證:平面BAD⊥平面AA1C1C;
(2)求二面角A﹣B1C1﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過(guò)點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,直線與橢圓的另一個(gè)交點(diǎn)分別為.
(1)若點(diǎn)坐標(biāo)為,且,求橢圓的方程;
(2)設(shè),,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com