【題目】數(shù)列{an}的前n項(xiàng)和為Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=nan , 求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:由 ,可得 (n≥2),
兩式相減,得 ,
,即 ,
故{an}是一個(gè)以1為首項(xiàng), 為公比的等比數(shù)列,
所以 ,n∈N*;
(2)bn=nan=n( )n﹣1.
Tn=b1+b2+b3++bn= ,①
= ,②
①﹣②,得 ,
所以 .
【解析】(1.)將n換為n﹣1,兩式相減,可得{an}是一個(gè)以1為首項(xiàng), 為公比的等比數(shù)列,運(yùn)用等比數(shù)列的通項(xiàng)公式即可得到;
(2.)求得bn=nan=n( )n﹣1.再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式即可得到所求和.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時(shí)期的數(shù)學(xué)家秦九韶是普州(現(xiàn)四川省安岳縣)人,秦九韶在其所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一例,則輸出的S的值為( )
A.4
B.﹣5
C.14
D.﹣23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|3x﹣2|+|x﹣2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)對任意的非零實(shí)數(shù)x,有f(x)≥(m2﹣m+2)|x|恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣ ,若對任意的x1 , x2∈[1,2],且x1≠x2時(shí),[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣e2 , e2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ2=4ρcosθ+6ρsinθ﹣12,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)).
(I)寫出直線l的一般方程與曲線C的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線C向左平移2個(gè)單位長度,向上平移3個(gè)單位長度,得到曲線D,設(shè)曲線D經(jīng)過伸縮變換 得到曲線E,設(shè)曲線E上任一點(diǎn)為M(x,y),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:參數(shù)方程與極坐標(biāo)系]
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 .
(Ⅰ)求曲線C2的直角坐標(biāo)系方程;
(Ⅱ)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個(gè)等級,并以80歲為界限分成兩個(gè)群體進(jìn)行 統(tǒng)計(jì),樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=kx+1與圓x2+y2+2x﹣my=0相交于A,B兩點(diǎn),若點(diǎn)A,B關(guān)于直線l:x+y=0對稱,則|AB|= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com