【題目】已知橢圓的離心率為,右焦點為圓的圓心,且圓軸所得弦長為4.

(1)求橢圓與圓的方程;

(2)若直線與曲線,都只有一個公共點,記直線與圓的公共點為,求點的坐標.

【答案】(1) 橢圓的方程為 ;圓的方程為. (2)

【解析】

1)由橢圓的離心率為,右焦點為圓C2:(x12+y2r2的圓心,列出方程組,求出a,bc,由此能求出橢圓的方程;由圓y軸所得弦長為4,得22+125,由此能求出圓的方程.(2)設直線l的方程為ykx+m,推導出4k2m22km5,由,得(3+4k2x2+8kmx+4m2120,由此利用根的判別式、直線方程、圓、橢圓性質,結合已知條件能求出直線l與圓的公共點A的坐標.

(1)由題意知:解得

,

所以橢圓的方程為

因為圓軸所得弦長為4,所以,

所以圓的方程為

(2)設直線的方程為,則

,

,

因為直線與曲線只有一個公共點,所以

,

化簡,得

①②聯(lián)立,解得

解得,

解得,

故直線與圓的公共點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,函數(shù)恰有兩個不同的零點,求實數(shù)的值;

2)當時,

若對于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十八大以來,我國精準扶貧已經(jīng)實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現(xiàn)減少貧困人口1000萬人以上的目標,力爭2020年在現(xiàn)行標準下,農村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進行取樣,統(tǒng)計結果如圖所示,從20166月底到20196月底的共進行了七次統(tǒng)計,統(tǒng)計時間用序號表示,例如:201612月底(時間序號為2)貧困戶為5.2萬戶.

(1)求關于的線性回歸方程,并預測到202012月底,該市能否實現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅戰(zhàn),該市扶貧辦在20196月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經(jīng)濟收入來源進行抽樣調查,統(tǒng)計結果如圖.并決定據(jù)此選派一批農業(yè)技術人員對全市所有貧困戶中,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶,每一名農業(yè)技術人員對口幫扶貧困戶90戶,則該市應分別安排多少農業(yè)技術人員對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ2.

(1)若以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,求曲線C的直角坐標方程;

(2)P(x,y)是曲線C上的一個動點,求3x4y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 ,過直線上任一點向拋物線引兩條切線(切點為,且點軸上方).

(1)求證:直線過定點,并求出該定點;

(2)拋物線上是否存在點,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,四棱錐的底面為菱形,平面,,

分別為的中點,

)求證:平面平面

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).

(1)求的最大值;

(2)若上恒成立,求的取值范圍;

(3)討論關于的方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)有下述四個結論:①若,則;②的圖象關于點對稱;③函數(shù)上單調遞增;④的圖象向右平移個單位長度后所得圖象關于軸對稱.其中所有正確結論的編號是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學相約來到某廟會,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位同學對游戲中獎結果進行了預測,預測結果如下:

甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

游戲結束后,這四位同學中只有一位同學中獎,且只有一位同學的預測結果是正確的,則中獎的同學是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案