【題目】已知對任意平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)角得到向量,叫做把點繞點逆時針方向旋轉(zhuǎn)角得到點.
(1)已知平面內(nèi)點,點.把點繞點沿順時針方向旋轉(zhuǎn)后得到點,求點的坐標;
(2)設(shè)平面內(nèi)曲線上的每一點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的點的軌跡是曲線,求原來曲線的方程,并求曲線上的點到原點距離的最小值.
【答案】(1) (2);
【解析】
設(shè)則,,根據(jù)題意, 點繞點沿順時針方向旋轉(zhuǎn),利用代入公式求解即可;
設(shè)是曲線上任一點,是點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的曲線上的點,則,,代入題中的公式,列出與的關(guān)系式,利用相關(guān)點法求出曲線的方程,由兩點間距離公式表示出,令,考慮函數(shù),通過構(gòu)造對勾函數(shù)并判斷其單調(diào)性求出最小值即可求出的最小值.
(1)由題意知,,設(shè),則,
由條件得
解之得,∴.
(2)設(shè)是曲線上任一點,是點繞坐標原點
沿逆時針方向旋轉(zhuǎn)后得到的曲線上的點,
所以,,
則,即
又在曲線上,所以,
即,整理得,
故曲線的方程是,
所以曲線C上的點到原點的距離為,
令,則,考慮函數(shù),
任取且,則,
當時,,,
所以,即,
所以在上單調(diào)遞減,
同理可證在上單調(diào)遞增,
所以.
故,即曲線上的點到原點距離的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】(1)6個人按下列要求站一橫排,甲、乙必須相鄰,有多少種不同的站法?
(2)6個人按下列要求站一橫排,甲不站左端,乙不站右端.有多少種不同的站法?
(3)用0,1,2,3,4,5這六個數(shù)字可以組成多少個六位數(shù)且是奇數(shù)(無重復數(shù)字的數(shù))?
(4)用0,1,2,3,4,5這六個數(shù)字可以組成多少個個位上的數(shù)字不是5的六位數(shù)(無重復數(shù)字的數(shù))?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知過點的圓和直線相切,且圓心在直線上.
(1)求圓的標準方程;
(2)點,圓上是否存在點,使若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】越接近高考學生焦慮程度越強,四個高三學生中大約有一個有焦慮癥,經(jīng)有關(guān)機構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應的正常值變化情況如下表:
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1 |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
(1)作出散點圖:
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程 (精確到0.01);
(3)根據(jù)經(jīng)驗,觀測值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進行心理疏導,若一個學生在距高考第二周時觀測值為100,則該學生是否需要進行心理疏導?
(, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com