【題目】已知對任意平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)角得到向量,叫做把點繞點逆時針方向旋轉(zhuǎn)角得到點.

1)已知平面內(nèi)點,點.把點繞點沿順時針方向旋轉(zhuǎn)后得到點,求點的坐標;

2)設(shè)平面內(nèi)曲線上的每一點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的點的軌跡是曲線,求原來曲線的方程,并求曲線上的點到原點距離的最小值.

【答案】1 2;

【解析】

設(shè),,根據(jù)題意,繞點沿順時針方向旋轉(zhuǎn),利用代入公式求解即可;

設(shè)是曲線上任一點,是點繞坐標原點沿逆時針方向旋轉(zhuǎn)后得到的曲線上的點,則,,代入題中的公式,列出的關(guān)系式,利用相關(guān)點法求出曲線的方程,由兩點間距離公式表示出,,考慮函數(shù),通過構(gòu)造對勾函數(shù)并判斷其單調(diào)性求出最小值即可求出的最小值.

1)由題意知,,設(shè),則,

由條件得

解之得,∴.

2)設(shè)是曲線上任一點,是點繞坐標原點

沿逆時針方向旋轉(zhuǎn)后得到的曲線上的點,

所以,,

,即

在曲線上,所以,

,整理得,

故曲線的方程是

所以曲線C上的點到原點的距離為,

,則,考慮函數(shù),

任取,則,

時,,,

所以,即

所以上單調(diào)遞減,

同理可證上單調(diào)遞增,

所以.

,即曲線上的點到原點距離的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】16個人按下列要求站一橫排,甲、乙必須相鄰,有多少種不同的站法?

26個人按下列要求站一橫排,甲不站左端,乙不站右端.有多少種不同的站法?

3)用01,2,3,4,5這六個數(shù)字可以組成多少個六位數(shù)且是奇數(shù)(無重復數(shù)字的數(shù))?

4)用0,12,34,5這六個數(shù)字可以組成多少個個位上的數(shù)字不是5的六位數(shù)(無重復數(shù)字的數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):

(年)

2

3

4

5

6

(萬元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知過點的圓和直線相切,且圓心在直線.

1)求圓的標準方程;

2)點,圓上是否存在點,使若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

(1)時,求不等式的解集;

(2) |的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點,一個焦點是

(1)求橢圓的方程;

(2)若傾斜角為的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】越接近高考學生焦慮程度越強,四個高三學生中大約有一個有焦慮癥,經(jīng)有關(guān)機構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應的正常值變化情況如下表:

周數(shù)x

6

5

4

3

2

1

正常值y

55

63

72

80

90

99

(1)作出散點圖:

(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程 (精確到0.01);

(3)根據(jù)經(jīng)驗,觀測值為正常值的0.851.06為正常,若1.061.12為輕度焦慮,1.121.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進行心理疏導,若一個學生在距高考第二周時觀測值為100,則該學生是否需要進行心理疏導?

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(1)設(shè)上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

同步練習冊答案