直線x-y+2=0與圓x2+y2=4相交于A,B,則弦長|AB|=
 
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:易得圓的圓心和半徑,由距離公式可得圓心到直線的距離d,由勾股定理可得|AB|=2
r2-d2
,代值計算可得.
解答: 解:∵圓x2+y2=4的圓心為(0,0),半徑r=2,
∴圓心到直線x-y+2=0的距離d=
|0-0+2|
12+(-1)2
=
2
,
∴弦長|AB|=2
r2-d2
=2
2

故答案為:2
2
點評:本題考查直線與圓的位置關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線3x-4y+6=0與圓(x-2)2+(y-3)2=4的位置關(guān)系是( 。
A、直線與圓相交且過圓心
B、直線與圓相交但不過圓心
C、相切
D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=mx2+mx+2-m.
(Ⅰ)若不等式f(x)>0對任意x∈R恒成立,求實數(shù)m的取值范圍;
(Ⅱ)若x=0是不等式f(x)<x唯一的整數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次方程mx2+(2m-1)x-m+2=0的兩個根都小于1,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
6
)(ω>0)的圖象與y軸交與P,與x軸的相鄰兩個交點記為A,B,若△PAB的面積等于π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)在一個周期內(nèi)的部分圖象如圖所示.則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m≠n,x=m4-m3n,y=n3m-n4,則x與y的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(-1,0),B(1,3),向量
a
=(2k-1,2),若
AB
a
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|-1≤x≤1},M={a},若P∪M=P,則a的取值范圍是( 。
A、(-∞,-1]
B、[1,+∞)
C、[-1,1]
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案