【題目】某市對(duì)各老舊小區(qū)環(huán)境整治效果進(jìn)行滿意度測(cè)評(píng),共有10000人參加這次測(cè)評(píng)(滿分100分,得分全為整數(shù)).為了解本次測(cè)評(píng)分?jǐn)?shù)情況,從中隨機(jī)抽取了部分人的測(cè)評(píng)分?jǐn)?shù)進(jìn)行統(tǒng)計(jì),整理見下表:

組別

分組

頻數(shù)

頻率

1

3

0.06

2

15

0.3

3

21

4

3

0.12

5

0.1

合計(jì)

1.00

1)求出表中,的值;

2)若分?jǐn)?shù)在80(含80分)以上表示對(duì)該項(xiàng)目“非常滿意”,其中分?jǐn)?shù)在90(含90分)以上表示“十分滿意”,現(xiàn)從被抽取的“非常滿意“人群中隨機(jī)抽取2人,求至少有一人分?jǐn)?shù)是“十分滿意”的概率;

3)請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全市的平均測(cè)評(píng)分?jǐn)?shù)

【答案】1,,,(2,(3

【解析】

1)選取一組頻率與頻數(shù)已知的數(shù)據(jù),構(gòu)造方程可求出,值,進(jìn)而根據(jù)各組累積頻數(shù)和,可求出
2)記事件為“抽取的2人在非常滿意的人中都不是十分滿意的人”,先求出總的基本事件數(shù),再求出事件對(duì)應(yīng)的基本事件數(shù),由概率公式計(jì)算即可.
3)累加各組組中頻數(shù)與頻率的乘積,可估算出全市的平均分?jǐn)?shù).

1,

,.

2)記事件為“抽取的2人在非常滿意的人中都不是十分滿意的人”,

從對(duì)該項(xiàng)目非常滿意的11人中抽取2人共有種取法,

而事件對(duì)應(yīng)的取法有種:

∴“至少有一人十分滿意”為事件:;

3)依題意,

評(píng)測(cè)分?jǐn)?shù):.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本市攝影協(xié)會(huì)準(zhǔn)備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢(mèng)人”攝影圖片展.通過平常人的鏡頭記錄國強(qiáng)民富的幸福生活,向祖國母親的生日獻(xiàn)禮.攝影協(xié)會(huì)收到了來自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中評(píng)出20個(gè)最佳作品,并邀請(qǐng)作者參加“講述照片背后的故事”座談會(huì).

①在答題卡上的統(tǒng)計(jì)表中填出每組應(yīng)抽取的人數(shù);

年齡

人數(shù)

②若從較年輕的前三組作者中選出2人把這些圖片和故事整理成冊(cè),求這2人至少有一人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若、分別是曲線上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:①任意兩條直線都可以確定一個(gè)平面;②若兩個(gè)平面有3個(gè)不同的公共點(diǎn),則這兩個(gè)平面重合;③直線a,bc,若ab共面,bc共面,則ac共面;④若直線l上有一點(diǎn)在平面α外,則l在平面α.其中錯(cuò)誤命題的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)FAD中點(diǎn),連接EF.

1)求證:平面ABC;

2)求證:平面平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>R的函數(shù)y=fx),部分xy的對(duì)應(yīng)關(guān)系如表:

x

2

1

0

1

2

3

4

5

y

0

2

3

2

0

1

0

2

1)求f{f[f0)]};

2)數(shù)列{xn}滿足x1=2,且對(duì)任意nN*,點(diǎn)(xn,xn+1)都在函數(shù)y=fx)的圖象上,求x1+x2+…+x4n

3)若y=fx)=Asinωx+φ)+b,其中A00ω<π,0φ<π,0b3,求此函數(shù)的解析式,并求f1)+f2)+…+f3n)(nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于曲線的下列說法:①關(guān)于原點(diǎn)對(duì)稱;②關(guān)于直線對(duì)稱;③是封閉圖形,面積大于;④不是封閉圖形,與圓無公共點(diǎn);⑤與曲線D的四個(gè)交點(diǎn)恰為正方形的四個(gè)頂點(diǎn),其中正確的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是平面內(nèi)互不平行的三個(gè)向量,,有下列命題:

方程不可能有兩個(gè)不同的實(shí)數(shù)解;

方程有實(shí)數(shù)解的充要條件是;

方程有唯一的實(shí)數(shù)解;

方程沒有實(shí)數(shù)解.

其中真命題有 .(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長(zhǎng)為6,寬為3的矩形折成正三棱柱,三棱柱的高度為3,矩形的對(duì)角線和三棱柱的側(cè)棱的交點(diǎn)記為E,F.

(1)求三棱柱的體積;

(2)求三棱柱中異面直線所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案