【題目】已知函數(shù),其圖象的一個(gè)對(duì)稱中心是,將的圖象向左平移個(gè)單位長度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)若對(duì)任意,當(dāng)時(shí),都有,求實(shí)數(shù)的最大值;

3)若對(duì)任意實(shí)數(shù)上與直線的交點(diǎn)個(gè)數(shù)不少于6個(gè)且不多于10個(gè),求實(shí)數(shù)的取值范圍.

【答案】1;(2;(3.

【解析】

1)根據(jù)正弦函數(shù)的對(duì)稱性,可得函數(shù)的解析式,再由函數(shù)圖象的平移變換法則,可得函數(shù)的解析式;

2)將不等式進(jìn)行轉(zhuǎn)化,得到函數(shù)[0,t]上為增函數(shù),結(jié)合函數(shù)的單調(diào)性進(jìn)行求解即可;

3)求出的解析式,結(jié)合交點(diǎn)個(gè)數(shù)轉(zhuǎn)化為周期關(guān)系進(jìn)行求解即可.

1)因?yàn)楹瘮?shù),其圖象的一個(gè)對(duì)稱中心是,所以有,的圖象向左平移個(gè)單位長度后得到函數(shù)的圖象.所以

2)由,構(gòu)造新函數(shù)為,由題意可知:任意,當(dāng)時(shí),都有,說明函數(shù)上是單調(diào)遞增函數(shù),而的單調(diào)遞增區(qū)間為:

,而,

所以單調(diào)遞增區(qū)間為:,因此實(shí)數(shù)的最大值為:

3,其最小正周期

區(qū)間的長度為,

直線的交點(diǎn)個(gè)數(shù)不少于6個(gè)且不多于10個(gè),,且

解得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)幾何體是由一個(gè)直角三角形繞其斜邊旋轉(zhuǎn)一周所形成的.若該三角形的周長為12米,三邊長由小到大依次為a,b,c,且b恰好為a,c的算術(shù)平均數(shù).

1)求ab,c

2)若在該幾何體的表面涂上一層油漆,且每平方米油漆的造價(jià)為5元,求所涂的油漆的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,其關(guān)系如圖1;投資股票等風(fēng)險(xiǎn)型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖2.

1)分別寫出兩種產(chǎn)品的年收益的函數(shù)關(guān)系式;

2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定二次函數(shù).

(1)證明:方程的根也一定是方程的根;

(2)找出方程4個(gè)不等實(shí)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點(diǎn)為F,拋物線上有三個(gè)動(dòng)點(diǎn)A,B,C.

1)若,求;

2)若,AB的垂直平分線經(jīng)過一個(gè)定點(diǎn)Q,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四名同學(xué)組成一個(gè)4100米接力隊(duì),老師要安排他們四人的出場順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙簦揖筒慌艿谝话.老師聽了他們四人的對(duì)話,安排了一種合理的出場順序,滿足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場順序中跑第三棒的人是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有_______.(寫出所有正確說法的序號(hào))

①在中,若,則;

②在中,若,則是銳角三角形;

③在中,若,則;

④若是等差數(shù)列,其前項(xiàng)和為,則三點(diǎn)共線;

⑤等比數(shù)列的前項(xiàng)和為,若對(duì)任意的,點(diǎn)均在函數(shù)(,均為常數(shù))的圖象上,則的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面結(jié)論中,正確結(jié)論的是(

A.存在兩個(gè)不等實(shí)數(shù),使得等式成立

B. (0< x < π)的最小值為4

C.是等比數(shù)列的前項(xiàng)的和,則成等比數(shù)列

D.已知的三個(gè)內(nèi)角所對(duì)的邊分別為,若,則一定是銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案